6,549 research outputs found

    On the use of prioritization and network slicing features for mission critical and commercial traffic multiplexing in 5G Radio Access Networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Public Protection and Disaster Relief (PPDR) sector is undergoing an important transition with the deployment of Mission Critical (MC) mobile broadband technology based on 3GPP standards, with multiple initiatives on-going worldwide for providing PPDR agencies with broadband communications capabilities. One common approach being adopted is the delivery of MC services together with commercial traffic over public mobile networks and the use of prioritization mechanisms to protect the MC connections in congestion situations. However, this approach leaves commercial traffic unprotected in front of a noncontrolled surge of MC traffic in specific cells since all resources would be allocated to serve this traffic. In this context, this paper proposes a solution to properly multiplex MC and commercial services with congestion protection for both types of services. The solution is based on the exploitation of the network slicing features brought into the new 5G standards. In particular, the paper describes how different slices can be parameterized in a 5G Radio Access Network (RAN) so that radio load guarantees can be established for each type of service. The proposed solution is evaluated in an illustrative scenario by means of simulations. Obtained results show the improvements in traffic isolation achievable by the slicing configuration when compared to the solution that only relies on prioritization mechanismsPeer ReviewedPostprint (author's final draft
    corecore