6 research outputs found

    Paper Persistence and Computer-based Workarounds with the Electronic Health Record in Primary Care

    Get PDF
    With the United States national goal and incentive program to transition from paper to electronic health records (EHRs), healthcare organizations are increasingly implementing EHRs and other related health information technology (IT). However, in institutions which have long adopted these computerized systems, such as the Veterans Health Administration, healthcare workers continue to rely on paper to complete their work. Furthermore, insufficient EHR design also results in computer-based workarounds. Using direct observation with opportunistic interviewing, we investigated the use of paper- and computer-based workarounds to the EHR with a multi-site study of 54 healthcare workers, including primary care providers, nurses, and other healthcare staff. Our analysis revealed several paper- and computer-based workarounds to the VA’s EHR. These workarounds, including clinician-designed information tools, provide evidence for how to enhance the design of the EHR to better support the needs of clinicians

    Using computational modeling to assess the impact of clinical decision support on cancer screening improvement strategies within the community health centers

    Get PDF
    AbstractOur conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability

    Redesign of a computerized clinical reminder for colorectal cancer screening: a human-computer interaction evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on barriers to the use of computerized clinical decision support (CDS) learned in an earlier field study, we prototyped design enhancements to the Veterans Health Administration's (VHA's) colorectal cancer (CRC) screening clinical reminder to compare against the VHA's current CRC reminder.</p> <p>Methods</p> <p>In a controlled simulation experiment, 12 primary care providers (PCPs) used prototypes of the current and redesigned CRC screening reminder in a within-subject comparison. Quantitative measurements were based on a usability survey, workload assessment instrument, and workflow integration survey. We also collected qualitative data on both designs.</p> <p>Results</p> <p>Design enhancements to the VHA's existing CRC screening clinical reminder positively impacted aspects of usability and workflow integration but not workload. The qualitative analysis revealed broad support across participants for the design enhancements with specific suggestions for improving the reminder further.</p> <p>Conclusions</p> <p>This study demonstrates the value of a human-computer interaction evaluation in informing the redesign of information tools to foster uptake, integration into workflow, and use in clinical practice.</p

    Provider Perceptions of Colorectal Cancer Screening Clinical Decision Support at Three Benchmark Institutions

    Get PDF
    Implementation of computerized clinical decision support (CDS), and its integration into workflow has not reached its potential. To better understand the use of CDS for colorectal cancer (CRC) screening at benchmark institutions for health information technology (HIT), we conducted direct observation, including opportunistic interviews of primary care providers, as well as key informant interviews and focus groups, to document current challenges to CRC screening and follow-up at clinics affiliated with the Veterans Heath Administration, Regenstrief Institute, and Partners HealthCare System. Analysis revealed six common barriers across institutions from the primary care providers’ perspective: receiving and documenting “outside” exam results, inaccuracy of the CDS, compliance issues, poor usability, lack of coordination between primary care and gastroenterology, and the need to attend to more urgent patient issues. Strategies should be developed to enhance current HIT to address these challenges and better support primary care providers and staff

    An Organizational Informatics Analysis of Colorectal, Breast, and Cervical Cancer Screening Clinical Decision Support and Information Systems within Community Health Centers

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)A study design has been developed that employs a dual modeling approach to identify factors associated with facility-level cancer screening improvement and how this is mediated by the use of clinical decision support. This dual modeling approach combines principles of (1) Health Informatics, (2) Cancer Prevention and Control, (3) Health Services Research, and (4) Organizational Change/Theory. The study design builds upon the constructs of a conceptual framework developed by Jane Zapka, namely, (1) organizational and/or practice settings, (2) provider characteristics, and (3) patient population characteristics. These constructs have been operationalized as measures in a 2005 HRSA/NCI Health Disparities Cancer Collaborative inventory of 44 community health centers. The first, statistical models will use: sequential, multivariable regression models to test for the organizational determinants that may account for the presence and intensity-of-use of clinical decision support (CDS) and information systems (IS) within community health centers for use in colorectal, breast, and cervical cancer screening. A subsequent test will assess the impact of CDS/IS on provider reported cancer screening improvement rates. The second, computational models will use a multi-agent model of network evolution called CONSTRUCT® to identify the agents, tasks, knowledge, groups, and beliefs associated with cancer screening practices and CDS/IS use to inform both CDS/IS implementation and cancer screening intervention strategies. This virtual experiment will facilitate hypothesis-generation through computer simulation exercises. The outcome of this research will be to identify barriers and facilitators to improving community health center facility-level cancer screening performance using CDS/IS as an agent of change. Stakeholders for this work include both national and local community health center IT leadership, as well as clinical managers deploying IT strategies to improve cancer screening among vulnerable patient populations
    corecore