4,435 research outputs found

    A Blockchain-based Approach for Data Accountability and Provenance Tracking

    Full text link
    The recent approval of the General Data Protection Regulation (GDPR) imposes new data protection requirements on data controllers and processors with respect to the processing of European Union (EU) residents' data. These requirements consist of a single set of rules that have binding legal status and should be enforced in all EU member states. In light of these requirements, we propose in this paper the use of a blockchain-based approach to support data accountability and provenance tracking. Our approach relies on the use of publicly auditable contracts deployed in a blockchain that increase the transparency with respect to the access and usage of data. We identify and discuss three different models for our approach with different granularity and scalability requirements where contracts can be used to encode data usage policies and provenance tracking information in a privacy-friendly way. From these three models we designed, implemented, and evaluated a model where contracts are deployed by data subjects for each data controller, and a model where subjects join contracts deployed by data controllers in case they accept the data handling conditions. Our implementations show in practice the feasibility and limitations of contracts for the purposes identified in this paper

    Provenance-based Auditing of Private Data Use

    No full text
    Across the world, organizations are required to comply with regulatory frameworks dictating how to manage personal information. Despite these, several cases of data leaks and exposition of private data to unauthorized recipients have been publicly and widely advertised. For authorities and system administrators to check compliance to regulations, auditing of private data processing becomes crucial in IT systems. Finding the origin of some data, determining how some data is being used, checking that the processing of some data is compatible with the purpose for which the data was captured are typical functionality that an auditing capability should support, but difficult to implement in a reusable manner. Such questions are so-called provenance questions, where provenance is defined as the process that led to some data being produced. The aim of this paper is to articulate how data provenance can be used as the underpinning approach of an auditing capability in IT systems. We present a case study based on requirements of the Data Protection Act and an application that audits the processing of private data, which we apply to an example manipulating private data in a university

    Provenance-based trust for grid computing: Position Paper

    No full text
    Current evolutions of Internet technology such as Web Services, ebXML, peer-to-peer and Grid computing all point to the development of large-scale open networks of diverse computing systems interacting with one another to perform tasks. Grid systems (and Web Services) are exemplary in this respect and are perhaps some of the first large-scale open computing systems to see widespread use - making them an important testing ground for problems in trust management which are likely to arise. From this perspective, today's grid architectures suffer from limitations, such as lack of a mechanism to trace results and lack of infrastructure to build up trust networks. These are important concerns in open grids, in which "community resources" are owned and managed by multiple stakeholders, and are dynamically organised in virtual organisations. Provenance enables users to trace how a particular result has been arrived at by identifying the individual services and the aggregation of services that produced such a particular output. Against this background, we present a research agenda to design, conceive and implement an industrial-strength open provenance architecture for grid systems. We motivate its use with three complex grid applications, namely aerospace engineering, organ transplant management and bioinformatics. Industrial-strength provenance support includes a scalable and secure architecture, an open proposal for standardising the protocols and data structures, a set of tools for configuring and using the provenance architecture, an open source reference implementation, and a deployment and validation in industrial context. The provision of such facilities will enrich grid capabilities by including new functionalities required for solving complex problems such as provenance data to provide complete audit trails of process execution and third-party analysis and auditing. As a result, we anticipate that a larger uptake of grid technology is likely to occur, since unprecedented possibilities will be offered to users and will give them a competitive edge

    Authentication and authorisation in entrusted unions

    Get PDF
    This paper reports on the status of a project whose aim is to implement and demonstrate in a real-life environment an integrated eAuthentication and eAuthorisation framework to enable trusted collaborations and delivery of services across different organisational/governmental jurisdictions. This aim will be achieved by designing a framework with assurance of claims, trust indicators, policy enforcement mechanisms and processing under encryption to address the security and confidentiality requirements of large distributed infrastructures. The framework supports collaborative secure distributed storage, secure data processing and management in both the cloud and offline scenarios and is intended to be deployed and tested in two pilot studies in two different domains, viz, Bio-security incident management and Ambient Assisted Living (eHealth). Interim results in terms of security requirements, privacy preserving authentication, and authorisation are reported

    Provenance-based validation of E-science experiments

    No full text
    E-Science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed, it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards. Scientists may also want to review and verify experiments performed by their colleagues. There are no existing frameworks for validating such experiments in today's e-Science systems. Users therefore have to rely on error checking performed by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions. The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested in a bioinformatics application that performs protein compressibility analysis

    Decentralized provenance-aware publishing with nanopublications

    Get PDF
    Publication and archival of scientific results is still commonly considered the responsability of classical publishing companies. Classical forms of publishing, however, which center around printed narrative articles, no longer seem well-suited in the digital age. In particular, there exist currently no efficient, reliable, and agreed-upon methods for publishing scientific datasets, which have become increasingly important for science. In this article, we propose to design scientific data publishing as a web-based bottom-up process, without top-down control of central authorities such as publishing companies. Based on a novel combination of existing concepts and technologies, we present a server network to decentrally store and archive data in the form of nanopublications, an RDF-based format to represent scientific data. We show how this approach allows researchers to publish, retrieve, verify, and recombine datasets of nanopublications in a reliable and trustworthy manner, and we argue that this architecture could be used as a low-level data publication layer to serve the Semantic Web in general. Our evaluation of the current network shows that this system is efficient and reliable
    • ā€¦
    corecore