1,270 research outputs found

    Provably Secure Countermeasures against Side-channel Attacks

    Get PDF
    Side-channel attacks exploit the fact that the implementations of cryptographic algorithms leak information about the secret key. In power analysis attacks, the observable leakage is the power consumption of the device, which is dependent on the processed data and the performed operations.\ignore{While Simple Power Analysis (SPA) attacks try to recover the secret value by directly interpreting the power measurements with the corresponding operations, Differential Power Analysis (DPA) attacks are more sophisticated and aim to recover the secret value by applying statistical techniques on multiple measurements from the same operation.} Masking is a widely used countermeasure to thwart the powerful Differential Power Analysis (DPA) attacks. It uses random variables called masks to reduce the correlation between the secret key and the obtained leakage. The advantage with masking countermeasure is that one can formally prove its security under reasonable assumptions on the device leakage model. This thesis proposes several new masking schemes along with the analysis and improvement of few existing masking schemes. The first part of the thesis addresses the problem of converting between Boolean and arithmetic masking. To protect a cryptographic algorithm which contains a mixture of Boolean and arithmetic operations, one uses both Boolean and arithmetic masking. Consequently, these masks need to be converted between the two forms based on the sequence of operations. The existing conversion schemes are secure against first-order DPA attacks only. This thesis proposes first solution to switch between Boolean and arithmetic masking that is secure against attacks of any order. Secondly, new solutions are proposed for first-order secure conversion with logarithmic complexity (O(logk){\cal O}(\log k) for kk-bit operands) compared to the existing solutions with linear complexity (O(k){\cal O}(k)). It is shown that this new technique also improves the complexity of the higher-order conversion algorithms from O(n2k){\cal O}(n^2 k) to O(n2logk){\cal O}(n^2 \log k) secure against attacks of order dd, where n=2d+1n = 2d+1. Thirdly, for the special case of second-order masking, the running times of the algorithms are further improved by employing lookup tables. The second part of the thesis analyzes the security of two existing Boolean masking schemes. Firstly, it is shown that a higher-order masking scheme claimed to be secure against attacks of order dd can be broken with an attack of order d/2+1d/2+1. An improved scheme is proposed to fix the flaw. Secondly, a new issue concerning the problem of converting the security proofs from one leakage model to another is examined. It is shown that a second-order masking scheme secure in the Hamming weight model can be broken with a first-order attack on a device leaking in the Hamming distance model. This result underlines the importance of re-evaluating the security proofs for devices leaking in different models

    ParTI -- Towards Combined Hardware Countermeasures against Side-Channel and Fault-Injection Attacks

    Get PDF
    Side-channel analysis and fault-injection attacks are known as major threats to any cryptographic implementation. Hardening cryptographic implementations with appropriate countermeasures is thus essential before they are deployed in the wild. However, countermeasures for both threats are of completely different nature: Side-channel analysis is mitigated by techniques that hide or mask key-dependent information while resistance against fault-injection attacks can be achieved by redundancy in the computation for immediate error detection. Since already the integration of any single countermeasure in cryptographic hardware comes with significant costs in terms of performance and area, a combination of multiple countermeasures is expensive and often associated with undesired side effects. In this work, we introduce a countermeasure for cryptographic hardware implementations that combines the concept of a provably-secure masking scheme (i.e., threshold implementation) with an error detecting approach against fault injection. As a case study, we apply our generic construction to the lightweight LED cipher. Our LED instance achieves first-order resistance against side-channel attacks combined with a fault detection capability that is superior to that of simple duplication for most error distributions at an increased area demand of 12%

    You cannot hide behind the mask : power analysis on a provably secure S-box implementation

    Get PDF
    Power analysis has shown to be successful in breaking symmetric cryptographic algorithms implemented on low resource devices. Prompted by the breaking of many protected implementations in practice, researchers saw the need of validating security of implementations with formal methods. Three generic S-box implementation methods have been proposed by Prouff el al., together with formal proofs of their security against 1st or 2nd-order side-channel analysis. These methods use a similar combination of masking and hiding countermeasures. In this paper, we show that although proven resistant to standard power analysis, these implementation methods are vulnerable to a more sophisticated form of power analysis that combines Differential Power Analysis (DPA) and pattern matching techniques. This new form of power analysis is possible under the same assumptions about power leakage as standard DPA attacks and the added complexity is limited: our experiments show that 900 traces are sufficient to break these algorithms on a device where 150 traces are typically needed for standard DPA. We conclude that the defense strategies—hiding by repeating operations for each possible value, and masking and hiding using the same random number—can create new vulnerabilities

    An Enhanced Dataflow Analysis to Automatically Tailor Side Channel Attack Countermeasures to Software Block Ciphers

    Get PDF
    Protecting software implementations of block ciphers from side channel attacks is a significant concern to realize secure embedded computation platforms. The relevance of the issue calls for the automation of the side channel vulnerability assessment of a block cipher implementation, and the automated application of provably secure defenses. The most recent methodology in the field is an application of a specialized data-flow analysis, performed by means of the LLVM compiler framework, detecting in the AES cipher the portions of the code amenable to key extraction via side channel analysis. The contribution of this work is an enhancement to the existing data-flow analysis which extending it to tackle any block cipher implemented in software. In particular, the extended strategy takes fully into account the data dependencies present in the key schedule of a block cipher, regardless of its complexity, to obtain consistently sound results. This paper details the analysis strategy and presents new results on the tailored application of power and electro-magnetic emission analysis countermeasures, evaluating the performances on both the ARM Cortex-M and the MIPS ISA. The experimental evaluation reports a case study on two block ciphers: the first designed to achieve a high security margin at a non-negligible computational cost, and a lightweight one. The results show that, when side-channel-protected implementations are considered, the high-security block cipher is indeed more efficient than the lightweight one
    corecore