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Abstract
Side-channel attacks exploit the fact that the implementations of cryptographic

algorithms leak information about the secret key. In power analysis attacks, the
observable leakage is the power consumption of the device, which is dependent
on the processed data and the performed operations. Masking is a widely used
countermeasure to thwart the powerful Differential Power Analysis (DPA) attacks.
It uses random variables called masks to reduce the correlation between the secret
key and the obtained leakage. The advantage with masking countermeasure is that
one can formally prove its security under reasonable assumptions on the device
leakage model. This thesis proposes several new masking schemes along with the
analysis and improvement of few existing masking schemes.

The first part of the thesis addresses the problem of converting between Boolean
and arithmetic masking. To protect a cryptographic algorithm which contains a
mixture of Boolean and arithmetic operations, one uses both Boolean and arith-
metic masking. Consequently, these masks need to be converted between the two
forms based on the sequence of operations. The existing conversion schemes are
secure against first-order DPA attacks only. This thesis proposes first solution to
switch between Boolean and arithmetic masking that is secure against attacks of
any order. Secondly, new solutions are proposed for first-order secure conversion
with logarithmic complexity (O(log k) for k-bit operands) compared to the existing
solutions with linear complexity (O(k)). It is shown that this new technique also
improves the complexity of the higher-order conversion algorithms from O(n2k) to
O(n2 log k) secure against attacks of order d, where n = 2d+1. Thirdly, for the spe-
cial case of second-order masking, the running times of the algorithms are further
improved by employing lookup tables.

The second part of the thesis analyzes the security of two existing Boolean
masking schemes. Firstly, it is shown that a higher-order masking scheme claimed
to be secure against attacks of order d can be broken with an attack of order d/2+1.
An improved scheme is proposed to fix the flaw. Secondly, a new issue concerning
the problem of converting the security proofs from one leakage model to another is
examined. It is shown that a second-order masking scheme secure in the Hamming
weight model can be broken with a first-order attack on a device leaking in the
Hamming distance model. This result underlines the importance of re-evaluating
the security proofs for devices leaking in different models.
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1.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Implementation Attacks and Countermeasures . . . . . . 4
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1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Cryptography
Cryptography is the art and science of securing communications in the presence
of a malicious third party. It includes protocols, algorithms and techniques to
prevent unauthorized access to the sensitive information. Cryptanalysis on the other
hand is the art and science of breaking cryptographic systems. The combination of
cryptography and cryptanalysis is called cryptology. Cryptography is used in variety
of applications including Internet, ATM, smart cards, passwords and e-commerce.

Suppose Alice (sender) wants to send a message (called plaintext) to Bob (re-
ceiver). Also suppose that Alice does not want any eavesdropper (Eve) to be able
to read the message. This can be achieved by using the techniques provided by
cryptography: Encryption and Decryption. Alice encrypts the plaintext using the
encryption algorithm and produces a random looking message called ciphertext.
Then she sends the ciphertext to Bob over an insecure channel (e.g. internet)
which can be observed by Eve. Upon receiving the message, Bob uses decryption
algorithm to decrypt the ciphertext back to the plaintext. This procedure is shown
pictorially in Figure 1.1. The encryption algorithm ensures that even if Eve gets
hold of the ciphertext, she will not be able to recover the plaintext from it. The
combination of encryption and decryption algorithms are referred to as cipher.

The use of encryption for secure communication has been around for many cen-
turies. The classical ciphers generally fall into two categories: transposition cipher
and substitution cipher. The transposition ciphers rearrange the letters of a mes-
sage, whereas substitution ciphers replace one or a group of letters with other letter
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Figure 1.1: The process of encryption and decryption

or a group of letters. For example, in Caeser cipher all the letters in the plaintext
are shifted by some fixed number of times (called key) to produce the cipher text.
The Vigénere cipher extends this idea by using different Caeser ciphers which in
turn use different shift values. However the ciphertext produced by the classical
ciphers reveal significant statistical information about the plaintext and hence can
be broken easily. To reduce the statistical dependence between the plaintext and
the ciphertext modern ciphers employ variety of techniques in combination with
substitution and transposition.

Though the initial usage of cryptography was limited to providing confidentiality
only, this has changed with the invention of computers and other communication
devices. In general modern cryptography mainly addresses the following problems:

• Confidentiality. Only the intended recipient should be able to recover the
plaintext from the ciphertext.

• Integrity. The message recipient should be able to detect if the original
message has been altered during the transmission.

• Authentication. The message recipient should be able to verify from the
message the identity of the sender.

• Non-repudiation. The sender should not be able to deny sending of the
message later.

In modern cryptography only the cryptographic key (a parameter to the algo-
rithm which determines the output) is kept secret. The algorithm itself is assumed
to be available to the attacker. The cryptographic algorithms are mainly classified
into three types: symmetric key cryptography, public key cryptography and hash
functions.

• Symmetric Key Cryptography. In symmetric key cryptography, the
sender and the receiver use the same key. For the security of these algorithms,
both the parties need to agree upon a key before the communication can start.
The symmetric key algorithms are generally divided into two categories:

– Block ciphers. These ciphers divide the plaintext into several blocks
(based on the block length of the cipher) and encrypt each block in-
dependently using the secret key. Examples of block ciphers include
DES (Data Encryption Standard) [Sta77], Advanced Encryption Stan-
dard (AES) [FIP01] etc.
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– Stream ciphers. These ciphers encrypt the plaintext one bit at a time
using the key stream generated by some form of feedback mechanism.
Examples of stream ciphers include RC4, Salsa20 etc.

• Public Key Cryptography. The public (or asymmetric) key cryptography
involves two keys: public key and private key. It depends on existence of
one-way trapdoor functions, which are easy to compute but computing their
inverse function is computationally difficult. For example, given two integers,
finding their product is an easy problem. However, given a number, it is
difficult to find the factors of it (so called factorization problem). The public
key algorithms are mainly divided into two categories:

– Encryption algorithms. The asymmetric encryption algorithms solve
the problem of confidentiality by employing two set of keys. If Alice
wants to send a message to Bob, she uses Bob’s public key to encrypt
the message. Upon receiving the message, Bob uses his private key to
decrypt the ciphertext. Examples of public key encryption algorithms
include RSA [RSA78], Elgamal etc.

– Digital signature algorithms. The digital signature algorithms solve
the problem of authentication. Alice uses her private key to sign a mes-
sage and sends it to Bob. Bob can verify the signature using Alice’s
public key. Examples of digital signature algorithms include DSA, Elga-
mal etc.

• Hash Functions. The hash functions are computationally efficient mappings
which take arbitrary length strings as input and output a string of fixed length
called hash value. For a cryptographic hash function it is required that given
a hash value it is computationally infeasible to compute the message which
hashes to it. Hash functions are widely used in digital signatures and to
provide data integrity. Examples of hash functions include SHA-1, SHA-2,
SHA-3, MD5 etc.

Cryptanalysis. The goal of the cryptanalyst (who does cryptanalysis) is to break
a cryptographic algorithm. For example, in case of symmetric key algorithm, he
could try to find the secret key and hence recover all the past and future communi-
cations using that key. This process is generally referred to as an attack. Normally,
an attacker can always perform a search on all possible key candidates and can
recover the correct key (called brute-force attack). Hence, the most important re-
quirement in designing a secure cipher is to make it infeasible for an attacker to
perform brute-force search. However what constitutes an attack is much broader
than just recovering the secret key. Any weakness found in the algorithm that re-
duces the complexity of an attacker compared to brute-force is also referred to as an
attack. Assuming that the knowledge of the algorithm is public, the cryptanalytic
attacks are divided into four types:

• Ciphertext-only attack. The attacker has access to several ciphertexts
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Figure 1.2: The outline of implementation attacks

produced using the same secret key. The goal of the attacker is to find the
plaintexts corresponding to them or even the secret key.

• Known-plaintext attack. The attacker has access to several plaintexts and
their corresponding ciphertexts. His job is to find the secret key using those
pairs.

• Chosen-plaintext attack. The attacker can choose plaintexts of his own
choice and can get the corresponding ciphertexts. Note that this attack is
more powerful than known-plaintext attack.

• Adaptive-chosen-plaintext attack. This can be considered as a special
case of chosen-plaintext attack. Here the attacker can chose the plaintexts
based on the results from previous chosen-plaintexts.

1.2 Implementation Attacks and Countermeasures

Implementation attacks as the name suggests exploit the physical implementations
of cryptographic algorithms on electronic devices. Therefore, this kind of attacks
are methodically very different from “traditional” cryptanalysis, which essentially
focuses on finding secret keys in a black box model given only pairs of plaintexts
and ciphertexts by exploiting the mathematical weaknesses in the algorithms.

The implementation attacks are categorized based on two criteria. The first
criteria is whether the attacks are passive which work based on observable leakage
or active which modify the execution environment (Refer to Figure 1.2 ).

• Passive attacks. In passive attacks the attacker tries to recover the secret
key using the observable phenomena from a cryptographic implementation.
This include timing attacks, i.e. attacks exploiting measurable differences in
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the execution time of a cryptographic algorithm or a specific operation it is
based upon [Koc96, Hey98]. A more sophisticated class of attacks is power
analysis attacks, which aim to deduce information about the secret key from
the power consumption of the device while a certain operation is carried out
[MOP07]. A third class are electromagnetic (EM) attacks, which exploit the
relationship between secret data and EM emanations produced by the device
[AARR03].

• Active attacks. In active attacks the attacker modifies the execution en-
vironment of the cryptographic device. For example, he can manipulate the
inputs so as to make the device behave in an abnormal way. This abnormal
behavior can then be used to recover the secret key. Examples of active at-
tacks include fault attacks [BDL97, BS97], which induce faulty inputs into
the device.

The second criteria used to categorize the implementation attacks is the interface
of the device exploited by the attacker. There are three different attacks based on
these criteria:

• Invasive attacks. In an invasive attack the attacker has the full control
over the cryptographic device. He can practically depackage the chip and
can access/control any part of the chip using a probe. The invasive attacks
can be passive or active based on whether the probe is used to only observe
the behavior of the chip or alter the functionality by changing the signals.
Though these attacks are strongest form of implementation attacks, they are
however very costly to perform as they require very expensive setup.

• Semi-invasive attacks. In a semi-invasive attack the attacker can also de-
package the chip. However, unlike the invasive attacks the attacker has lim-
ited control over the device and the passivation layer of the chip remains
intact. For example, he can’t make a direct contact to the chip surface or use
probing. A passive semi-invasive attack involves reading the content of the
memory, whereas an active semi-invasive attack induces faults in the device.
Though these attacks are relatively cheaper than the invasive attacks, they
still require significant effort as finding the exact location on the chip to at-
tack requires time and money. For a comprehensive treatment of invasive and
semi-invasive attacks please refer to the PhD thesis of Sergei P. Skorobogatov
[Sko05].

• Non-invasive attacks. In a non-invasive attack the attacker can only ob-
serve/control the accessible interfaces of the device. These are relatively in-
expensive to perform requiring as low as a $1000 setup. In particular, passive
non-invasive attacks also called side-channel attacks are very easy to mount
and hence gained significant attention from the research community. Side-
channel attacks include timing attacks, power analysis attacks, EM attacks
etc. On the other hand, active non-invasive attacks induce faults into the
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device without unpacking it (for e.g. by inducing clock glitches). This thesis
solely focuses on side-channel attacks and their countermeasures.

1.2.1 Side-channel Attacks

Though side-channel attacks were believed to be known for some time, they were
first documented by Paul Kocher in 1996 [Koc96]. Most prominent side-channel
attacks include timing attacks [Koc96], power analysis attacks [KJJR11] and elec-
tromagnetic emission attacks [AARR03].

• Timing attacks. Cryptographic algorithms often take different amounts
of time for different inputs. For example, an exponentiation operation is
normally implemented using square-and-multiply method. In this method,
the exponent is represented as a series of binary digits. If the exponent bit
is 0 we only perform square operation, whereas if the bit is 1 we perform
both the square and multiply operations. As the timing requirement for both
the bits is different, the attacker can differentiate between the two and hence
recover the secret key if used in an exponentiation. Similar attacks are also
possible which exploit the time it takes for cache hit/miss (called cache-timing
attacks).

• Power analysis attacks. In general the power consumption of a device
depends on the processed data and the performed operations. For example,
if a data bit changes from 0 to 1 or 1 to 0 as a result of an operation, it
dissipates more power than when it does not change. This variation in the
power consumption can be exploited by the attacker to recover the secret
key. For a most comprehensive treatment of power analysis attacks, refer to
[MOP07].

• EM attacks. Similar to the power consumption, the electromagnetic radia-
tion of the device is also dependent on the processed data. Hence by observing
the EM radiation emitting from the device while the secret key is being pro-
cessed, the attacker can recover the secret key.

Though timing attacks are the easiest side-channel attacks to mount, they are also
easy to circumvent. Due to their simplicity and effectiveness, the power analysis
attacks received significant attention from the research community. Throughout
this thesis the words side-channel attacks and power analysis attacks are used in-
terchangeably as most of the techniques used in power analysis attacks can also be
used to mount EM attacks as well.

Simple power analysis (SPA) attacks. The SPA attacks try to recover the
secret key by visually inspecting the power measurements from the cryptographic
device. For example, if we consider the square-and-multiply method of implement-
ing the exponentiation, the pattern in the power trace corresponding to the square
operation (exponent bit 0) will be different from the pattern corresponding to square
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Figure 1.3: The outline of a DPA attack

and multiply operations (exponent bit 1). By observing one or few such traces from
the measurement, the attacker could recover the full secret key. However, these
attacks can be usually quite challenging in practice (due to noise) and require full
knowledge of the cryptographic implementations.

Differential power analysis (DPA) attacks. The DPA attacks in contrast to
the SPA attacks require little knowledge about the cryptographic implementations
and work based on divide-and-conquer approach. In cryptographic algorithms, the
operations are normally performed on a part of the secret key. Therefore, the at-
tacker can compute predictions over all possible values of a key chunk. Then he
can recover the secret key using the statistical correlation between the observed
power values and the estimated values for all the possible key guesses. Examples
of the statistical techniques used in DPA attacks include distance-of-means, corre-
lation coefficient etc. These attacks can be successful even with extremely noisy
power measurements and hence are a big threat to the security of the cryptographic
devices.

A typical DPA attack works as shown in Figure 1.3. The cryptographic device
implements a certain cryptographic algorithm (e.g. AES). To measure the power
consumption of the device during its operation, a small resistor (1 Ω) is connected
in series to the power supply of the device. The device is then connected to an
oscilloscope which records the power consumption values and sends them to the
computer. The computer sends the plaintexts to the device and receives the cor-
responding ciphertexts after the encryption. Based on the ciphertexts and their
corresponding power measurements, we then perform the DPA attack.

Generally side-channel attacks follow a two-step procedure: Finding the ap-
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propriate leakage model for the device in question and recovering the secret key
using appropriate distinguisher. Depending on the choice of the leakage model the
side-channel attacks are divided into two categories:

• Profiled attacks. The profiled attacks work in two phases: off-line phase
and on-line phase. In the off-line phase the attacker builds the device leakage
model for the device in question. There exist several techniques in the lit-
erature to build such models: Gaussian templates [CRR02], linear regression
[SLP05] etc. In the on-line phase the attacker has access to one or more power
traces corresponding to the same key. By using the leakage model built in the
off-line phase and appropriate statistical distinguisher, the attacker differen-
tiates between the correct key and the wrong key candidates.

• Non-profiled attacks. In case of non-profiled attacks the attacker chooses
the leakage model based on a-priori information about the device and hence
there is no off-line phase. Examples of such leakage models include Hamming
weight model, Hamming distance model etc. In Hamming weight model the
device leaks the Hamming weight (i.e. the number of 1’s in the binary rep-
resentation) of the data under processing. On the other hand in Hamming
distance model the leakage is proportional to the hamming distance between
the old and new data (i.e. the number of positions at which the old and new
data differs). The rest of the attack works similar to the profiled attacks.

There exist several distinguishers useful in a side-channel key recovery attack.
We recall two most widely used distinguishers below:

• Distance-of-means. For each possible key candidate, the attacker divides
the power traces into two parts based on whether a particular bit of an inter-
mediate variable is 1 or 0. Then he computes the difference of the means of
both the parts. The key candidate with the highest difference would be the
correct key [KJJ99].

• Pearson’s correlation coefficient. For each possible key candidate, the
attacker computes the predicted power consumption based on some leakage
model. Then each of these predicted values are correlated with the observed
power values from the actual measurements. The key candidate with the
highest absolute correlation would be the correct key [BCO04].

Both the distinguishers recalled above can only reveal linear dependencies between
the predicted values and the power consumption values. Recently there were efforts
to find a generic side-channel distinguisher which can reveal all kind of dependencies
between the predicted and actual values. One such distinguisher is Mutual Infor-
mation Analysis (MIA), which works based on the information theoretic metric
Mutual Information [GBTP08, VS09].

1.2.2 Countermeasures against Side-channel Attacks

Ever since the introduction of Side-Channel Analysis (SCA) attacks in the late ’90s,
there has been a massive body of research on finding effective countermeasures to
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thwart these attacks, in particular the highly effective Differential Power Analysis
(DPA) attacks. From a high-level perspective, DPA countermeasures aim to either
randomize the power consumption (which can be done in both the time and ampli-
tude domain) or make it completely independent from the processed data. The goal
of both approaches is to eliminate (or, at least, reduce) the correlation between the
power consumption and the key-dependent intermediate variables processed during
the execution of a cryptographic algorithm. The most widely used countermea-
sures against side-channel attacks fall into two categories: hiding and masking.
These countermeasures in turn can be applied at different stages. Algorithmic
countermeasures (also called software countermeasures) modify the cryptographic
algorithm in such a way that the leakage from the sensitive variables is reduced.
On the other hand hardware countermeasures employ several techniques to reduce
the data dependent power leakage from the cryptographic device. There also exist
countermeasures at the protocol level which essentially limit the number of times
a particular key is used in a cryptographic operation, thus restricting the number
of measurements available to the attacker in a DPA attack. In practice, the im-
plementations of cryptographic systems use a mixture of several countermeasures
depending on the required security level [CCD00]. This thesis mainly focuses on
the algorithmic countermeasures.

Hiding. There are two ways a countermeasure can eliminate the dependency be-
tween the power consumption of the device and the processed data:

• Randomize the power consumption in each clock cycle.

• Ensure that the device power consumption is uniform in each clock cycle.

There exists several ways to achieve these, some of which are recalled below.

• Random delays. This technique involves inserting random delays in the
middle of the execution of a cryptographic algorithm. This ensures that the
attacker cannot align the traces, which is required for a successful DPA attack.

• Dummy operations. Here, unrelated dummy operations are inserted inside
the cryptographic algorithm. Similar to random delays, this technique also
induces misalignment in the traces thus increasing the required effort for the
attacker.

• Shuffling. This technique involves re-ordering the sequence of operations
in such a way that the final output of the algorithm does not change. For
example, the order of execution of S-boxes in AES can be randomized without
affecting the final result. This randomization is mainly performed using two
approaches: Using a random permutation (called RP method) or using a
random start index (RSI). Based on the level of randomization, the shuffling
can amplify the noise in the device and hence increase the effort required by
the attacker. For a comprehensive treatment of shuffling countermeasure refer
to [VMKS12] and [RPD09].
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Masking. The advantage with hiding countermeasures is that they are relatively
efficient to implement in practice. However, most of these techniques (except for
some variants of shuffling) are ad-hoc and do not provide any concrete security
guarantees. To overcome this problem we use masking, which can be proven under
certain assumptions on the device leakage model. In order to circumvent DPA
attacks using masking, we divide the secret value into two shares: a mask generated
randomly and the masked value of the secret. However, this approach can still be
attacked via a second-order DPA attack involving two operations corresponding to
the two shares of the secret [JPS05]. To circumvent this, we use two randomly
generated masks with a total of three shares including the masked value of the
secret. In general, a d-th order masking scheme is vulnerable to a (d+ 1)-th order
DPA attack involving all d+1 shares of the secret. These attacks are called Higher-
order DPA attacks (HODPA) and the corresponding masking is called Higher-order
masking.

Masking, depending on the involved operations, can be either Boolean, arith-
metic, or multiplicative. When used to protect a cryptographic algorithm that
performs a mixture of these operations, it is necessary to convert the masks from
one form to the other in order to be able to produce the correct result at the end
of the algorithm.

1.3 Contributions
This thesis focuses on securing the cryptographic implementations against side-
channel attacks. In particular, it examines the masking countermeasure and pro-
poses new algorithms to protect implementations of symmetric key cryptosystems.
It also analyzes previously published masking schemes and provides new insights to
improve their efficiency and security.

We start with a review of some of the prominent masking schemes in Chapter
2. We first provide a general introduction to masking and the problem of mask
conversion. We then examine Boolean masking in detail and review the state of
the art. Finally we recall the existing solutions to convert between Boolean and
arithmetic masking.

In chapter 3 we give our first solution to the problem of conversion between
Boolean and arithmetic masking secure against any order. To set the context, we
first show that existing first-order solutions can not directly be extended to protect
against higher-order attacks. We then give two solutions to perform addition on
Boolean shares with varying complexity. Using these solutions we develop the
conversion algorithms from arithmetic to Boolean masking as well as Boolean to
arithmetic masking. We prove the security of all the proposed algorithms in a well-
known security model. We also give the implementation results of all the proposed
algorithms when applied to HMAC-SHA-1 on a 32-bit microcontroller. This is a
joint work with Jean-Sébastien Coron and Johann Großschädl and published in the
proceedings of CHES 2014 [CGV14].

All the existing solutions to convert from arithmetic to Boolean masking have
linear complexity in the size of the masked operand. In chapter 4 we give new algo-
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rithms with logarithmic complexity thus gaining exponential improvement. We also
show that our new techniques can be naturally extended to higher-order masking
and hence require lesser time compared to the solutions given in chapter 3. We
give the experimental validation of our improved algorithms with two real-world
examples: HMAC-SHA-1 and light weight block cipher SPECK. This is a joint
work with Jean-Sébastien Coron, Johann Großschädl and Mehdi Tibouchi and will
appear in the proceedings of FSE 2015 [CGVT15].

In chapter 5 we further improve the running time of the first and second-order
secure conversion algorithms by employing lookup tables. We first give two straight-
forward algorithms using the generic second-order secure countermeasure. However,
these algorithms quickly become inefficient as they require a lookup table of 2n en-
tries for the masked operands of n-bit. To overcome this challenge we propose to
use divide-and-conquer approach, which reduces the size of the lookup tables to a
manageable size. This is a joint work with Johann Großschädl and published in the
proceedings of SPACE 2013 [VG13] and COSADE 2015 [VG15].

In chapter 6 we study the fast and provably secure higher-masking of AES S-box
proposed by Kim et al. at CHES 2011 [KHL11]. Their scheme uses composite field
methods to accelerate the inversion operation in F28 . However, as we show their
n-th order secure scheme is actually insecure against attacks of order n/2 + 1. We
then propose a method to fix this flaw. This is a joint work with Junwei Wang,
Johann Großschädl and Qiuliang Xu and published in the proceedings of CT-RSA
2015 [WVGX15].

In chapter 7 we examine the validity of security proofs in different leakage
models. We show that a security proof given in one model is no more secure if the
device leaks in a different model. This result emphasizes the need to re-evaluate
the masking schemes when porting an implementation from device leaking in one
model to another. This is a joint work with Jean-Sébastien Coron, Christophe
Giraud, Emmanuel Prouff, Soline Renner and Matthieu Rivain and published in
the proceedings of COSADE, 2012 [CGP+12b].
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Chapter 2

Masking

Masking is, besides hiding, the most widely used countermeasure to thwart Dif-
ferential Power Analysis (DPA) attacks on symmetric cryptosystems. The main
advantage with the masking schemes is that one can formally prove their security
under certain assumptions on the device leakage model. In this chapter we re-
call several prominent masking schemes published in the literature along with their
security guarantees and limitations.
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2.1 Introduction
Masking aims to conceal each sensitive intermediate variable x with a random value
x2, called mask [CJRR99]. This means that the sensitive variable x is represented
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Figure 2.1: Evaluating f(x) secure against d-th order attacks

by two shares, namely the masked variable x1 = x⊕x2 and the mask x2. The shares
need to be manipulated separately throughout the execution of the algorithm to
ensure that the instantaneous power consumption of the device does not leak any
information about x. Indeed, a straightforward DPA attack may yield x1 or x2
(both of which appear as random numbers to the attacker), but knowledge of x1
alone or x2 alone does not reveal any information about the sensitive variable x.

One of the main challenges when applying masking to a block cipher is to imple-
ment the round functions in a way that the shares can be processed independently
from each other, while it still must be possible to recombine them at the end of
the execution to get the correct result. This is fairly easy for all linear operations,
but may introduce significant overheads for the non-linear parts of a cipher, i.e.
the S-boxes. In addition, all round functions need to be executed twice (namely
for x1 and x2, where x = x1 ⊕ x2), which entails a further performance penalty.
Another problem is that a basic masking scheme as described above is vulnerable
to a so-called second-order DPA attack, in which an attacker combines information
from two leakage points. Namely, he exploits the side-channel leakage originating
from x1 and x2 simultaneously [OMHT06]. Such a second-order DPA attack can,
in turn, be thwarted by second-order masking in which each sensitive variable is
concealed with two random masks and represented by three shares. In general, a
d-th order masking scheme uses d random masks to split a sensitive intermediate
variable into d+ 1 shares x1, x2, . . . , xd+1 satisfying x1⊕x2⊕ · · ·⊕xd+1 = x, which
are processed independently. In this way, it is guaranteed that the joint distribution
of any subset of up to d shares is independent of the secret key. Only a combina-
tion of all d + 1 shares (i.e. the masked variable x1 = x ⊕ x2 ⊕ · · · ⊕ xd+1 and
the d masks x2, . . . , xd+1) is jointly dependent on the sensitive variable. However,
given a sufficient amount of noise, the effort for attacking a higher-order masked
implementation increases exponentially with d [CJRR99].
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To evaluate a function f on the sensitive variable x against attacks of order d, we
use the method shown in Figure 2.1. We first generate d input shares (x1, · · · , xd)
and d input shares randomly (y1, · · · , yd). The d+ 1-th input share is computed as:
xd+1 = x⊕x1⊕ · · · ⊕xd. Then, the higher order masking produces d+ 1-th output
share yd+1 such that yd+1 = f(x)⊕ y1 ⊕ · · · ⊕ yd.

Provably Secure Masking.

As noted previously, the advantage with masking schemes is that one can prove the
security of the corresponding algorithms based on certain realistic assumptions on
the device leakage model. The prominent models for proving the masking schemes
are: Hamming weight model, Hamming distance model and probing model. Proving
security against first-order attacks is easy since one can list all the intermediate
variables occur in the algorithm and then show that none of them are dependent
on the secret key (i.e., their distribution is independent of the secret key). This
approach can be generalized to any order masking. For example in case of second
order masking, we can show that no pair of intermediate variables depends on the
secret key. However, as the order increases, the number of tuples that need to
be considered grows exponentially. To counter this, we use a different approach
proposed by Ishai, Sahai and Wagner in [ISW03]. The main principle behind ISW
approach is that if the distribution of any set of t intermediate variables can be
simulated without the knowledge of the original inputs, then the scheme is secure
against attacks of order t. To achieve this, one can iteratively generate a subset
of the input shares that are sufficient to simulate the distribution of t intermediate
variables. If the number of input shares required is less than the actual number of
shares, then we can generate those shares randomly.

Mask Conversion.

Depending on the operation to be protected, a masking scheme can either be
Boolean (using logical XOR), arithmetic (using modular addition/subtraction) or
multiplicative (using modular multiplication). To successfully “unmask” the vari-
able at the end of the algorithm, one has to track the change of the masked secret
value during the execution of the algorithm. If an algorithm contains two of the
three afore-mentioned operations (i.e. XOR, modular addition/subtraction, mod-
ular multiplication), the masks have to be converted from one form to the other,
keeping this conversion free from any leakage. Goubin introduced secure methods
to convert between first-order Boolean and arithmetic masks in [Gou01]. Coron and
Tchulkine improved the method for switching from arithmetic to Boolean mask-
ing in [CT03], which was recently further improved by Debraize in [Deb12]. There
also exist solutions for converting between arithmetic and multiplicative masking
of higher-order [GPQ10, GPQ11a, GPQ11b].
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Boolean vs Arithmetic Masking.

Boolean masking is widely-used countermeasure for cryptographic algorithms that
use only linear operations over the field F2 and non-linear S-boxes (e.g. DES and
AES). However, if an algorithm includes arithmetic operations (such as IDEA
[LM90], RC6 [CRRY04], and SHA-1 [NIS95]), a masking scheme that is compatible
with the arithmetic operation must be used [CJRR99]. For example, if x3 = x1 +x2
must be computed securely, we can mask both x1 and x2 arithmetically by writing
x1 = A1 + r1 and x2 = A2 + r2 for some random values r1 and r2. Then, instead of
computing the sum x3 directly, we can add the two shares separately, which results
again in two arithmetic shares for x3 = (A1 +A2) + (r1 + r2).

Besides IDEA, RC6 and SHA-1, there also exist many other algorithms that
execute both arithmetic (e.g. modular addition) and logical operations. Examples
include ARX-based block ciphers like XTEA and Threefish, the SHA-3 finalists
Blake and Skein, as well as all four stream ciphers from the e-Stream software
portfolio. Hence, techniques to protect both kinds of operation are of practical
importance. There exist two approaches to solve this problem.
Using mask conversion. This is a three step process as given below:

1. Convert Boolean shares to corresponding arithmetic shares.

2. Perform addition on arithmetic shares.

3. Convert the result back to Boolean shares.

Note that this approach requires that the mask conversion itself is also secure against
first-order (resp. higher-order) attacks.
Addition on Boolean shares. In this approach, use only one Boolean masking
and employ secure algorithms to perform the addition directly on the shares.

While there exist some papers about the first method, the second approach
has, surprisingly, not been studied in detail. The decision whether to apply the
conversion or not depends on the target cryptographic algorithm.

Organization.

The rest of the chapter is organized as follows. We first describe the security
guarantees provided by masked implementations in Section 2.2. Then we review
the existing techniques to evaluate cryptographic implementations in Section 2.3.
We then recall some of the prominent results related to Boolean masking (used to
protect AES, DES etc.) in Section 2.4. Goubin’s algorithms to convert between
Boolean and arithmetic masking are given in Section 2.5. The improved solutions
to convert from arithmetic to Boolean masking using lookup tables are recalled in
Section 2.6.

2.2 Masking Security Guarantees
The main principle behind masking schemes is to randomize the secret data manip-
ulated by the leaking device. This is achieved by splitting each sensitive variable



2.2 Masking Security Guarantees 17

into d shares (where d − 1 shares are generated randomly) and performing all the
operations on the shares independently. For a masking scheme to be secure, the
distribution of any combination of d − 1 shares should be independent of the sen-
sitive variable. To recover the secret key, the attacker then needs to combine the
leakages from at least d shares, which requires estimating d-th order moment of the
leakage distribution. Given sufficient noise and provided the leakages from different
shares are independent, computing such a distribution becomes exponentially hard
in the number of shares. In this section, we give a brief overview of the security
guarantees provided by masked implementations and their limitations.

The first formal study of masking was conducted by Chari et al. in [CJRR99].
They show that in the presence of noisy leakage, the complexity of a single bit Dif-
ferential Power Analysis attack increases exponentially with the number of shares.
To be more precise, let every bit b computed in the algorithm is split into d shares
as follows: generate d− 1 bits randomly (let them be r1, r2, · · · , rd−1) and compute
the d-th share as r1 ⊕ r2 ⊕ · · · rd−1 ⊕ b. Also assume that each of these shares are
part of a different word and other bits of the word are chosen uniformly at random.
By making reasonable assumptions on the device leakage model, they show that
the effort required by the attacker increases exponentially in d.

Power model. The power consumption of CMOS devices mostly depends on the
changes in the logic circuits, for e.g. change in the values of the registers, RAM,
address bus, data buts etc. In a chip, each clock edge triggers a series of operations
which contribute to the overall power consumption. If we ignore the effect due to
glitches, the instantaneous power consumption can be approximately modeled as
the sum of the power consumption due to all the events occurred during that clock
cycle. Hence, for any share we have

P = Pb + PC +R

where P is the instantaneous power consumption of the device, Pb is the power
consumption corresponding to the particular bit b, PC is the distribution of the
power contributions where bit b and other bits of the share are involved and R is
the distribution of the noise. For simple operations, PC is negligible and can be
ignored. The noise R can be modeled using normal distribution with mean µ and
variance σ2.

Let us assume that the adversary can record several power consumption mea-
surements for random inputs. Every measurement sample contains information
about the d shares at different instances in time. Let the distribution of the
power consumption for each of these shares be Z1, Z2, · · · , Zd. Also assume that
Zi = Ai + Xi, where Ai is the contribution from the actual bit ri and Xi is the
additive factor with a distribution R, which also contains the noise. The value of Ai
can be either 0 or 1 with equal probability (i.e. 1/2). Hence, the power consump-
tion profile for Ai is different depending on the value of ri. Let these distributions
be D1 (when b = 0) and D2 (when b = 1).

To successfully recover the secret bit b, the adversary needs to distinguish be-
tween the two distributions D1 and D2. The result from [CJRR99] shows that the
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attacker needs at least nk/2−4δ samples to distinguish between D1 and D2 with a
probability n−δ, where n = σ2 is the variance of the Gaussian noise. The main
theorem from [CJRR99] is recalled below.

Theorem 2.1. Let δ be a constant. Given distributions D1 and D2 defined above,
any adversary which has access to m < nk/2−4δ samples (n = σ2) from these two
distributions, has probability at most n−δ of distinguishing D1 and D2.

Though the analysis performed by Chari et al. improved the confidence in the
security of carefully implemented masking schemes, it had an important limitation.
Their analysis is only valid for individual operations and is not applicable for the
full block cipher.

Probing model. In [ISW03] Ishai, Sahai and Wagner (ISW) initiated a theoreti-
cal study of securing circuits against an adversary who can probe a limited number
of wires in the circuit. In probing model, the adversary is allowed to access at
most t wires in the circuit without learning anything about the secret key. They
proposed a method to transform any circuit with n gates into an equivalent circuit
of O(n2t) gates that is secure against probing attacks. However, the probing model
has an important limitation that it does not consider an attacker who can exploit
the leakage from the complete implementation.

In [FRR+10], Faust et al. proved the security of ISW method in two more
general leakage models. In the first model, the leakage function is considered to be
computationally bounded (belonging to AC0 complexity class) and requires a leak-
free hardware component. However, Rothblum [Rot12] in his work gave a method
to compute under AC0 leakage without the additional requirement of a leak-free
hardware component. In the second model, it is assumed that the implementation
leaks the bits of the circuit state perturbed by independent binomial noise. To
be more precise, each bit is flipped with probability p and remains unchanged with
probability 1−p. Though these results prove the security of masking in the presence
of global leakage, the considered models seem impractical.

Security of masking in practice. In [SVO+10] Standaert et al. analyzed the
practical security of masking implementations. With the help of information theo-
retic framework introduced by Standaert et al. in [SMY09], they show that expo-
nential security of masking schemes is only possible when there is sufficient noise.
Namely, given a d-th order masked implementation, the number of traces required
for an attacker to recover the secret key is proportional to (σ2)d/2, where σ2 is the
variance of the noise present in the device. Though this analysis considered only
Hamming weight leakage model for an adversary who can perform a worst-case tem-
plate attack, it confirms the theoretical claims about exponential security provided
by masking schemes in practice.

Security of masking against global leakage. A first attempt to prove the
security of a masked implementation of the full block cipher under realistic leakage
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models was carried out by Prouff and Rivain in [PR]. They consider only com-
putation leaks model, which assumes that each computation carried out by the
device reveals a leakage function of the data that is actually used during the cur-
rent computation. They assume that these leakage functions are noisy and hence
every elementary operation leaks only a noisy function of it’s input, where the noise
can be changed depending on the required security level. Furthermore, they as-
sume the existence of a leak-free component to refresh the masks. Based on these
assumptions, they prove that for a d-th order masking, the information about the
sensitive data provided by the leakage from the full block cipher implementation
can be made negligible in the masking order.

Later Duc et al. gave a reduction proof from the noisy leakage model by Prouf
and Rivain to the ISW probing model [DDF14]. As a result, the requirement of leak-
free component from Prouff-Rivain has been removed. This result has an important
implication. All the masking schemes (including the ones given in this thesis) proven
in the ISW probing model indeed provide exponential security in the number of
shares against side-channel attacks provided the measurements have sufficient noise
and the leakages from different shares have independent distributions.

A note on the independence assumption. In practice, it is not always possible
for an implementation to ensure independence between the leakages from different
shares. For example, in case of software implementations, if the device leaks in
the Hamming distance model, the independence condition may not be satisfied,
which could reduce the effort required by the attacker (as we show in Chapter 7).
Namely, for a device leaking in the Hamming distance model, one might need twice
the number of shares compared to the device leaking in the Hamming weight model
for achieving same level of security [BGG+14]. On the other hand, glitches that
occur in the circuits of masked gates can invalidate the independence assumption
in hardware implementations [MPG05, BNN+12, MPL+11]. In [DFS15], Duc et
al. provided tools to analyze the impact of such non-independent leakages on the
security of the masked implementations.

2.3 Evaluating Security of an Implementation

In this section, we summarize the techniques to evaluate the security of an imple-
mentation against side-channel attacks. We first describe the powerful Differential
Power Analysis (DPA) attack and Correlation Power Analysis (CPA) attack in
the context of first-order security. We then review template attacks which require
additional methods to profile the device leakage model. Thereafter we recall the
methods to defeat masked implementations using higher-order DPA attacks. Then
we describe Mutual Information Analysis (MIA) attacks, which can be applied to
both unmasked and masked implementations. Finally, we give an overview of the
leakage detection tests.
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2.3.1 DPA Attacks

DPA attacks are extremely powerful since they do not require full knowledge of the
implementation and can reveal the secret key even when the power measurements
have significant noise. Generally a DPA attack consists of five steps as given below.

1. Choosing the intermediate variable. The first step in a DPA attack is
to decide on an intermediate variable that needs to be examined. This is
typically a function of the plaintext (or ciphertext) and a part of the secret
key. For example, in AES one can choose the output of an S-box i.e. S(pi⊕ki)
where pi and ki are the i-th plaintext and key bytes. A general rule of thumb
is to pick a variable that is the result of a non-linear operation.

2. Collecting the power traces. In the second step, the attacker needs to col-
lect the power traces for different values of the selected intermediate variable
while the device is performing the required cryptographic operation. Each
power trace PT is a vector of power consumption values over different in-
stances in time. Hence, this step produces a matrix T of size N × PT , where
N is the number of power traces acquired.

3. Computing hypothetical intermediate values. In the next step, the at-
tacker computes the value of the intermediate variable for each key candidate.
For example, in case of AES if the S-box output is the targeted intermediate
variable, the value of vi,j = S(pi ⊕ j) is computed for each possible value of
k, i.e. 0 ≤ j ≤ 255 and for the all the plaintexts pi : 0 ≤ i ≤ N 1. As a result
we have a matrix V of size N ×K, where K is the number of all possible key
candidates.

4. Estimating hypothetical power consumption values. In this step, the
hypothetical intermediate values computed in Step 3 are mapped to the hypo-
thetical power consumption values. This requires the knowledge of the power
model corresponding to the device. The widely used models are: Hamming
weight model and Hamming distance model. This step produces a matrix H
of size N ×K.

5. Comparing the hypothetical power values with the power traces. In
the final step, the hypothetical power values computed in step 4 are compared
with the actual power traces collected in step 2. Namely, each column Hi in H
is compared with each column Ti in T to produce a matrix R of size K×PT ,
where the element Ri,j corresponds to the comparison between columns Hi

and Tj . Then the highest value Rck,ct in the matrix R corresponds to the
correct key (for the column Hck). Based on the used comparison function,
there exists different types of DPA attacks, some of which are recalled below.

Single-bit DPA attack. In a single-bit DPA attack the hypothetical power con-
sumption values in step 4 are computed based on the Hamming weight or Hamming

1For simplicity, we consider only one byte of the plaintext and the secret key.
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distance of a single bit of the targeted intermediate variable. For bit l of the inter-
mediate variable vi,j we have:

Hi,j = f(vi,j,l) where f is replaced by HW or HD

Then we divide each row Ti in T into two groups S0,j and S1,j for each possible
value of key (j) as follows:

S0,j = {Ti|Hi,j = 0}
S1,j = {Ti|Hi,j = 1}

Now we compute the average power trace for each of the sets:

A0,j = 1
|S0,j |

∑
S0,j,l∈S0,j

S0,j,l

A1,j = 1
|S1,j |

∑
S1,j,l∈S1,j

S1,j,l

Then we compute the difference between A0,j and A1,j which is stored in Rj .

Rj = |A1,j −A0,j |

The value j corresponding to the maximum value in the matrix R would be the
correct key.

Multi-bit DPA attack. In a multi-bit DPA attack the hypothetical power con-
sumption values are computed based on the Hamming weight or Hamming distance
of multiple bits of the targeted intermediate variable. The comparison function is
also changed as a result. There exits two variants of multi-bit DPA attack based
on the choice of the comparison function [MDS02]. In all-but-nothing d-bit DPA
attack the traces are divided into three groups as follows:

S0,j = {Ti|Hi,j = 0d}
S1,j = {Ti|Hi,j = 1d}
S2,j = {Ti|Hi,j /∈ {S0,j , S1,j}}

Here 0d and 1d refers to the sequence of d 0’s and 1’s respectively. Then the average
traces are computed for the sets S0,j and S1,j which is used in computing Rj as
in the case of single-bit DPA attack. On the other hand, generalized DPA attack
divides the traces based on the relative Hamming weight or Hamming distance of
the traces as given below:
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S0,j = {Ti|Hi,j ≤ n− d}
S1,j = {Ti|Hi,j > d}
S2,j = {Ti|Hi,j /∈ {S0,j , S1,j}}

Here n is the Hamming weight or Hamming distance of the sequence containing all
1’s. The rest of the attack works similar to the all-but-nothing d-bit DPA attack.

CPA attack. In a CPA attack we determine the linear correlation between the
hypothetical power values and the measured power traces. It differs from the multi-
bit DPA attack only with respect to the comparison function. Here, the matrix
R is computed based on the correlation between the columns Hj and Ti (where
1 ≤ j ≤ K and 1 ≤ i ≤ PT ) using Pearson’s correlation coefficient as follows:

Rj,i =
∑N
l=1(Hl,j − Ĥj).(Tl,i − T̂i)√∑N

l=1(Hl,j − Ĥj)2.
∑N
l=1(Tl,i − T̂i)2

Here Ĥj and T̂i correspond to the mean values of the columns Hj and Ti. The
value j corresponding to the maximum absolute value Rj,i in matrix R would be
the correct key.

2.3.2 Template Attacks

Template attacks, contrary to other types of attacks, work in two phases. In the
first phase (called off-line phase) we determine the leakage model of the device as
opposed to the other attacks where the leakage is assumed to be following Hamming
weight or Hamming distance model. In the second phase (called on-line phase) the
actual attack is performed.

Template attacks exploit the fact that the power traces can be represented by a
multivariate normal distribution defined by mean vectorm and covariance matrix C.
In the off-line phase we build a template for each possible value of the intermediate
variable. Namely, for every possible value of vi we compute mean vector (m)vi and
the covariance matrix (C)vi .

In the on-line phase we are given with a new trace t for which we evaluate
the probability density function of the normal distribution corresponding to all the
templates. Namely, for every (m,C)vi we compute the probability as follows:

p(t; (m,C)vi) =
exp(−1

2 · (t−m)′ · C−1 · (t−m))√
(2 · π)T · det(C)

We then determine the correct key from the template which corresponds to the
highest probability (Maximum likelihood principle). Note that the templates built
in the off-line phase can also be used in performing a DPA or CPA attack. Here we
compute the hypothetical power values from the built model instead of using an a
priori model.
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2.3.3 Higher-order DPA Attacks

The security of a masking scheme depends on the fact that the masked variable
vm and the mask m are pairwise independent of each other as well as the sensitive
intermediate variable v. If this is true, then the predicted power consumption values
corresponding to the sensitive variable v do not have any correlation to the actual
power traces and hence it is not possible to recover the secret key. However, if we
use two intermediate variables (i.e. vm and m) to compute the prediction values in
a DPA or CPA attack, then it is possible to defeat the masking countermeasure.
These types of attacks are called second-order DPA attacks. To prevent against
second-order attacks we use second-order masking, which conceals the sensitive
variable using three intermediate variables. However, second-order masking can be
susceptible to third-order attacks which compute the prediction values using three
shares of the sensitive variable. Indeed, this technique can be generalized to any
order d. Namely, a d-th order masking scheme can be defeated by combing all the
d + 1 shares corresponding to the intermediate variable. These attacks are called
higher-order DPA attacks. In this section we describe the methods to perform a
second-order CPA attack. The same approach can be followed in the case of higher-
order CPA attacks as well.

In a second-order attack we exploit the leakages of two intermediate variables
corresponding to the same mask. However, this leakage cannot be exploited directly
as the intermediate variables occur at different instances in time. To counter this
problem we preprocess the power traces so as to obtain the power consumption
which is dependent on both the intermediate variables. Furthermore, we also need
a method to compute the hypothetical values that are a combination of both the
intermediate variables for which we use a combination function. In general, combi-
nation function depends on the type of masking used for the intermediate variable.
For Boolean masking, we combine the variables using xor operation:

Comb(vm,m) = vm ⊕m = v

The rest of the attack works similar to a first-order CPA attack.
The preprocessing of power traces consists of two steps: selecting points of

interest from the complete trace and applying appropriate preprocessing function.

Selecting points of interest. For a second-order attack we require two points in
the power trace that correspond to the processing of the intermediate variables vm
and m. However, in practice it is not possible to know the exact time instances at
which the variables are being manipulated. On the other hand it is computationally
expensive to consider all the possible pairs from a given trace. In [OMHT06], Oswald
et al. consider all the pairs of points in a small window based on an educated guess.
Later Reparaz et al. proposed a systematic approach to select the points of interest
using Mutual Information Analysis [RGV12]. In [DSV+14] Durvaux et al. proposed
an alternative solution that uses projection pursuits.
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Applying preprocessing function. Once we select the points of interest, the
next step involves applying a preprocessing function on each of these points to obtain
a single value. Let the leakages from a pair of points (p1, p2) be (L(p1), L(p2)).
Then, we can apply one of the following functions to obtain a preprocessed trace.

• Absolute difference. pre(L(p1), L(p2)) = |L(p1)− L(p2)|

• Product combining. pre(L(p1), L(p2)) = L(p1)× L(p2)

If the device leaks in Hamming weight model and if we use Pearson’s correlation
coefficient distinguisher, normalized product combining function provides the best
results [PRB09b]. We define the normalized product combining as follows:

pre(L(p1), L(p2)) = (L(p1)− E[L(p1)])× (L(p2)− E[L(p2)])

where E[L(p1)] and E[L(p2)] refer to the expectation of the leakages at point p1
and point p2 respectively.

2.3.4 Mutual Information Analysis

A CPA or DPA attack reveals the secret key by determining the linear dependency
between the measured power traces and hypothetical power consumption values.
To exploit all kinds of statistical dependencies (i.e. linear as well as non-linear)
we use Mutual Information Analysis (MIA) ([BGP+11, Aum07]). MIA is based
on mutual information, which gives a measure of mutual dependency between two
random variables.

Mutual information between two random variables X and Y is formally defined
as:

I(X,Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

where H(X), H(Y ) are the marginal entropies of X and Y and H(X|Y ), H(Y |X)
are the conditional entropies. A typical MIA attack works in two stages. In the
first stage, we estimate the probability density functions for different key dependent
models. There exists several methods to estimate the probability density function.
In particular, histograms and kernel estimation techniques have been successfully
applied in the context of MIA. In the second stage, we test the dependency of
the estimated models with the measured power traces. Namely, for an estimated
model M , we test it’s dependency with the leakage L for every key guess k by
computing the mutual information between the leakage and the power trace. The
key candidate that maximizes the mutual information would be the correct key.

Apart from revealing all kinds of statistical dependencies, MIA also has addi-
tional advantage that it can be applied to higher-order attacks without requiring
additional preprocessing step as in the case of HO-CPA [GBPV10]. Here we esti-
mate the multivariate probability density function involving different shares of the
sensitive variable. The rest of the attack works similar to the case of first-order
MIA.
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2.3.5 Leakage Detection Tests

All the methods described so far has an important limitation: they only verify if
a certain attack is possible on an implementation under chosen leakage model and
the intermediate variable. As the new attacks are being discovered, it is possible
that these attacks might be able to succeed although the currently known attacks
are unsuccessful in recovering the secret key. Furthermore, the selection of an ap-
propriate model is often a difficult task and error prone. Hence, there is a need
for evaluation methods which are independent of the type of attacks, intermediate
variables and the device leakage models. To address this problem, Gilbert et al.
proposed two leakage assessment methodologies based on Student’s t-test: specific
t-test and non-specific t-test [GJJR11]. A t-test determines whether the given data
sets are significantly different from each other (i.e. verifies the null hypothesis).
The proposed non-specific t-test examines the device leakage without actually per-
forming an attack. This gives an indication about the exploitable leakage in the
implementation. However, note that presence of leakage does not necessarily im-
ply a successful attack. Instead, it provides a feedback to the designers about the
potential leakage sources.

In a non-specific t-test, we collect power traces corresponding to fixed and ran-
dom inputs which are randomly interleaved. We divide the collected traces into two
sets S1 and S2 corresponding to the fixed and random inputs respectively. Then,
we apply Welsch’s t-test to each point in the collected trace. For a single point on
the trace, t-test is computed as:

t = µ1 − µ2√
V1
|S1| + V2

|S2|

where µi, Vi, |Si| denote mean, variance and number of traces for the set Si. Based
on the t-value corresponding to fixed and random input sets, we determine the
presence of first-order leakage. Typically for |t| > 4.5, a first-order attack is highly
feasible.

2.4 Boolean Masking
In Boolean masking each sensitive variable x is represented by two Boolean shares
x1, x2 so that x = x1 ⊕ x2. Block ciphers make repeated use of key-dependent
transformations called round transformations. The round transformations in turn
are a combination of linear and non-linear functions. To protect block ciphers
against side-channel attacks using masking, we need to mask both these functions.
In general, masking a linear function is easy since:

f(x1 ⊕ x2) = f(x1)⊕ f(x2)

which makes it easy to evaluate the function f on the two shares independently.
However, the non-linear functions (e.g. S-box) are difficult to mask as they don’t
provide such an easy relationship. In general non-linear functions are masked using
two methods:
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1. Write the non-linear function as a combination of linear/affine functions and
protect them independently (e.g. [OMPR05, AG01, BGK05])

2. Use a randomized lookup table to store the masked values of the function
outputs (e.g. [HOM06]) 2

The same approach can be used for higher-order masking as well.

2.4.1 Generic Countermeasure Against Second-order DPA

At FSE 2008, Rivain et al proposed two algorithms to protect the computation
of S-box outputs against second-order attacks [RDP08]. Given three input shares
of a secret value x, namely x1 = x ⊕ x2 ⊕ x3, x2, and x3 (which are all in F2n)
and two output shares y1, y2 ∈ F2m along with an (n,m) S-box lookup function
S, they compute the third share y3 such that y1 ⊕ y2 ⊕ y3 = S(x). Hence, we
have y3 = S(x) ⊕ y1 ⊕ y2. The algorithms compute (S(x1 ⊕ a) ⊕ y1) ⊕ y2 for all
possible values of a (i.e. 0 ≤ a ≤ 2n−1), among which the correct value can be
obtained when a = x2 ⊕ x3. We recall these algorithms below.

Algorithm 1 Prouff-Rivain Sec2O-masking: First Variant
Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:

(y1, y2) ∈ F2m , and an (n,m) S-box lookup function S
Output: Masked S-box output: S(x)⊕ y1 ⊕ y2
1: Randomly generate n-bit number r
2: r′ ← (r ⊕ x2)⊕ x3
3: for a = 0 to 2n − 1 do
4: a′ ← a⊕ r′
5: T [a′]← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
6: end for
7: return T [r]

Algorithm 1 uses a table of 2n entries to store (S(x1⊕a)⊕y1)⊕y2 for all possible
values of a. Here, the value (x2⊕x3) is masked via a random variable r, the result of
which is assigned to r′. Thereafter, the entry corresponding to (S(x1⊕a)⊕y1)⊕y2
will be stored at location a′ = a ⊕ r′. The correct value of the third share y3 can
be retrieved by accessing the value stored in the table at location T [r]. As r = a′,
the value of a becomes a = r ⊕ r′ = x2 ⊕ x3, thus yielding the desired result.

The security of Algorithm 1 can be proven by showing that it is impossible to
recover x by combining any pair of intermediate variables computed by the algo-
rithm. Please refer to Section 3.1 in [RDP08] for the complete proof. Algorithm 1
requires a table of 2n words (each having a length of m bits) in RAM, and is,
therefore, not suitable for low-cost devices. To overcome this issue, Rivain et al
introduced another algorithm consuming less memory at the expense of executing
more operations.

2In several cases S-boxes are implemented using lookup tables.
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Algorithm 2 Prouff-Rivain Sec2O-masking: Second Variant
Input: Three input shares: (x1 = x ⊕ x2 ⊕ x3, x2, x3) ∈ F2n , two output shares:

(y1, y2) ∈ F2m , and an (n,m) S-box lookup function S
Output: Masked S-box output: S(x)⊕ y1 ⊕ y2
1: Randomly generate one bit b
2: for a = 0 to 2n − 1 do
3: cmp← compareb(x2 ⊕ a, x3)
4: Rcmp ← ((S(x1 ⊕ a)⊕ y1)⊕ y2)
5: end for
6: return Rb

Algorithm 2 gives the second solution proposed by Rivain et al in [RDP08]
to securely compute an S-box output. In this variant, they use a function called
compareb(x, y), which returns b if x = y and b̄ otherwise. A first-order secure
implementation of compareb is necessary to guarantee the security of the algorithm.
To this end, Rivain et al [RDP08] presented a method for implementing the compareb
function, recalled in Algorithm 3. The secure S-box computation works as follows:
First, a random bit b is generated, which is one of the inputs to the compareb
function. Then, for each possible value of a, the algorithm computes (S(x1 ⊕ a)⊕
y1)⊕ y2, which will be written to either Rb or Rb̄, depending on the actual output
of the compareb function. The inputs to the compareb function are x2 ⊕ a and x3.
When a = x2⊕x3, compareb(x2⊕a, x3) returns b, thus the result is stored in Rb. In
all other cases, the returned value is b̄, so the result is stored in the register Rb̄. At
the end of the algorithm, the value stored in Rb is S(x)⊕ y1 ⊕ y2, which is exactly
what we wanted to achieve.

Note that Algorithm 2 needs only 2n bits in RAM, namely for the function
compareb. Thus, it requires m times less memory than Algorithm 1, though the
execution time is longer due to multiple calls to the compareb function.

Algorithm 3 Compare Function
Input: x, y, b, n
Output: b if x = y, b̄ otherwise
1: r3 ← rand(n)
2: T [ 0 : 2n − 1]← b̄, b̄, . . . , b̄
3: T [r3]← b
4: return T [(x⊕ r3)⊕ y]

2.4.2 Higher-order Masking

The first higher-order resistant implementation of AES was proposed by Schramm
and Paar [SP06]. Given n shares of the sensitive variable x: (x1 = x ⊕ x1 ⊕ · · · ⊕
xn, x2, · · · , xn) they compute the n shares of S(x): (S(x)⊕y1⊕· · ·⊕yn, y1, · · · , yn)
using repeated recomputation of the masked table. We recall their first algorithm
in Algorithm 4.
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Algorithm 4 Schramm-Paar HO-masking
Input: n input shares: (x1, x2, · · · , xn), n− 1 output shares: (y1, · · · , yn), and an

(n,m) S-box lookup function S
Output: Masked S-box output: S(x)⊕ y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do
2: for a = 0 to 2n − 1 do
3: S∗[a]← S[a⊕ xi]⊕ yi
4: end for
5: S ← S∗

6: end for
7: return S(x1)

The above algorithm recomputes the lookup table n times (for security against
attacks of order n−1) for each round of the cipher. This makes the implementation
significantly slower. To improve the performance, they propose a modification,
which performs n recomputations only for the first S-box in the first round. For the
rest of the S-box computations they recompute the table only once. However, Coron
et al. showed that this scheme is insecure against attacks of order greater than 2
[CPR07]. This has been recently fixed by Coron, who proposed a higher-order
secure algorithm to compute randomized lookup table [Cor14].

On the other hand, solutions also exist for higher-order secure computation of
S-box on the fly. At CHES 2010, Rivain and Prouff [RP10] proposed an algorithm
to protect the AES against n-th order attacks based on the Ishai-Sahai-Wagner
construction [ISW03]. Their basic idea is to write the AES round transformations
as operations in the field GF(28) and mask additions and multiplications. This
approach can be extended to any S-box by considering the polynomial representa-
tion of the S-box, which can be computed using Lagrange polynomial interpolation
over a finite field [CGP+12a]. This was later improved by Roy, Vivek in [RV13] and
Coron, Roy, Vivek in [CRV14].

2.5 Goubin’s Conversion Algorithms

In this section we recall Goubin’s algorithm for converting from Boolean masking
to arithmetic masking and conversely [Gou01], secure against first-order attacks.
Given a k-bit variable x, for Boolean masking we write:

x = x′ ⊕ r

where x′ is the masked variable and r ← {0, 1}k. Similarly for arithmetic masking
we write

x = A+ r mod 2k

In the following all additions and subtractions are done modulo 2k, for some pa-
rameter k.
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Figure 2.2: Goubin Boolean to arithmetic conversion

2.5.1 Boolean to Arithmetic Conversion

We first recall the Boolean to arithmetic conversion method from Goubin [Gou01].
One considers the following function Ψx′(r) : F2k → F2k :

Ψx′(r) = (x′ ⊕ r)− r

Theorem 2.2 (Goubin [Gou01]). The function Ψx′(r) = (x′⊕ r)− r is affine over
F2.

Using the affine property mentioned above, the conversion from Boolean to arith-
metic masking is straightforward. Given x′, r ∈ F2k we must compute A such that
x′ ⊕ r = A+ r. From the affine property of Ψx′(r) we can write:

A = (x′ ⊕ r)− r = Ψx′(r) =
(
Ψx′(r2)⊕Ψx′(0)

)
⊕Ψx′(r ⊕ r2)

for any r2 ∈ F2k . Therefore the technique consists in first generating a uniformly
distributed random r2 in F2k , then computing Ψx′(r ⊕ r2) and Ψx′(r2) ⊕ Ψx′(0)
separately, and finally performing XOR operation on these two to get A (refer to
Figure 2.2). The technique is clearly secure against first-order attacks; namely the
left term Ψx′(r ⊕ r2) is independent from r and therefore from x = x′ ⊕ r, and
the right term Ψx′(r2) ⊕ Ψx′(0) is also independent from r and therefore from x.
Note that the technique is very efficient as it requires only a constant number of
operations (independent of k). We recall the full algorithm in Algorithm 5.
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Figure 2.3: Goubin arithmetic to Boolean conversion

Algorithm 5 Goubin B→A Conversion
Input: x′, r such that x′ = x⊕ r
Output: A, r such that x = A+ r
1: r2 ← rand(k)
2: T ← x′ ⊕ r2
3: T ← T − r2
4: T ← x′ ⊕ T
5: S ← r ⊕ r2
6: A← S ⊕ x′
7: A← A− S
8: A← A⊕ T

2.5.2 From Arithmetic to Boolean Masking

Goubin also described in [Gou01] a technique for converting from arithmetic to
Boolean masking, secure against first-order attacks. However it is more complex
than from Boolean to arithmetic masking; its complexity is O(k) for additions
modulo 2k. It is based on the following theorem.

Theorem 2.3 (Goubin [Gou01]). If we denote x′ = (A + r) ⊕ r, we also have
x′ = A⊕ uk−1, where uk−1 is obtained from the following recursion formula:{

u0 = 0
∀k ≥ 0, uk+1 = 2[uk ∧ (A⊕ r)⊕ (A ∧ r)] (2.1)

The recursion formula is shown pictorially in Figure 2.3. From Theorem 2.3,
one obtains the following corollary.

Corollary 2.1 ([Gou01]). For any random γ ∈ F2k , if we assume x′ = (A+ r)⊕ r,
we also have x′ = A ⊕ 2γ ⊕ tk−1, where tk−1 can be obtained from the following
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recursion formula:

{
t0 = 2γ
∀i ≥ 0, ti+1 = 2[ti ∧ (A⊕ r)⊕ ω] (2.2)

where ω = γ ⊕ (2γ) ∧ (A⊕ r)⊕A ∧ r.

Since the iterative computation of ti contains only XOR and AND operations, it
can easily be protected against first-order attacks. This gives the algorithm below.

Algorithm 6 Goubin A→B Conversion
Input: A, r such that x = A+ r
Output: x′, r such that x′ = x⊕ r
1: γ ← rand(k)
2: T ← 2γ
3: x′ ← γ ⊕ r
4: Ω← γ ∧ x′
5: x′ ← T ⊕A
6: γ ← γ ⊕ x′
7: γ ← γ ∧ r
8: Ω← Ω⊕ γ
9: γ ← T ∧A

10: Ω← Ω⊕ γ
11: for j := 1 to k − 1 do
12: γ ← T ∧ r
13: γ ← γ ⊕ Ω
14: T ← T ∧A
15: γ ← γ ⊕ T
16: T ← 2γ
17: end for
18: x′ ← x′ ⊕ T
19: return x′

We can see that the total number of operations in the above algorithm is 5k+5,
in addition to one random number generation. Karroumi et al. recently improved
Goubin’s conversion scheme down to 5k + 1 operations [KRJ04]. More precisely
they start the loop in (2.2) from i = 2 instead of i = 1, and compute t1 directly
with a single operation, which decreases the number of operations by 4.

Karroumi et al. also provided an algorithm to compute first-order secure addi-
tion on Boolean shares using Goubin’s recursion formula, requiring 5k+8 operations
and a single random generation. More precisely, given two sensitive variables x and
y masked as x = x′ ⊕ s and y = y′ ⊕ r, their algorithm computes two shares
z1 = (x + y) ⊕ r ⊕ s, z2 = r ⊕ s using Goubin’s recursion formula (2.1); we recall
their solution in Algorithm 7.
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Algorithm 7 KRJ SecAdd
Input: x′, s, y′, r such that x = x′ ⊕ s and y = y′ ⊕ r
Output: z1, z2 such that z1 ⊕ z2 = (x+ y)
1: γ ← rand(k)
2: C ← γ
3: T ← x′ ∧ y′; Ω← C ⊕ T
4: T ← x′ ∧ r; Ω← Ω⊕ T
5: T ← y′ ∧ s; Ω← Ω⊕ T
6: T ← r ∧ s; Ω← Ω⊕ T
7: B ← Ω� 1; C ← C � 1
8: A0 ← x′ ⊕ y′;A1 ← r ⊕ s
9: T ← C ∧A0; Ω← Ω⊕ T

10: T ← C ∧A1; Ω← Ω⊕ T
11: for j := 2 to k − 1 do
12: T ← B ∧A0
13: B ← B ∧A1
14: B ← B ⊕ Ω
15: B ← B ⊕ T
16: B ← B � 1
17: end for
18: A0 ← A0 ⊕B
19: A0 ← A0 ⊕ C
20: return (A0, A1)

2.6 Conversion Algorithms Based on Lookup Tables

The arithmetic to Boolean conversion algorithm proposed by Goubin requires 5k+5
operations when the size of the conversion operand is k bits. Several algorithms
were later proposed to improve the efficiency using lookup tables. In this section we
recall two of them: Coron-Tchulkine method [CT03] and Debraize method [Deb12].
A similar method was also was proposed in [NP04] in the context of protecting
IDEA block cipher.

2.6.1 Coron-Tchulkine Algorithm

The first solution to the problem of arithmetic to Boolean conversion using lookup
tables was given by Coron and Tchulkine in [CT03]. To convert arithmetic shares
of size k bits to corresponding Boolean shares, their first method uses a table of 2k
bits. We recall their algorithm to create the lookup table in Algorithm 8.
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Algorithm 8 Coron-Tchulkine A→B Conversion: LUT
Input:
Output: Table T and used random number r
1: r ← rand(k)
2: for a := 0 to 2k − 1 do
3: T [a]← (a+ r)⊕ r
4: end for
5: return T, r

For converting an arithmetic share A = x − r to a Boolean share x′ = x ⊕ r,
we can just access the table entry T [A] = (A + r) ⊕ r = x ⊕ r. This requires only
constant time as in case of Goubin’s Boolean to arithmetic conversion. However,
this solution is not practical for larger k (e.g. k > 10) as we need a lookup table
of 2k entries. To overcome this challenge, they proposed a solution using two l-bit
tables, where l is the size of the lookup table (generally l < 8) and k = l ·p for some
p > 0.

Let us assume that the sensitive variable x is represented by two arithmetic
shares A and R so that x = A + R mod 2k. We need to obtain corresponding
Boolean shares x′, r such that x = x′⊕R. Their solution works based on recursively
applying l-bit lookup table to l-bit words starting from the least significant word.
Let A = A1||A2, R = R1||R2 and x = x1||x2 where A1, R1, x1 are of (p− 1) · l bits
and A2, R2, x2 are of l bits. For a random l-bit integer r let

A = (A− r) +R2 mod 2k

That implies
x = (A1||A2) + (R1||r) mod 2k

which can be written as

x1 = A1 +R1 + c mod 2(p−1)·l

x2 = A2 + r mod 2l

where c is the carry from the addition A2+r which also need to be protected against
first-order attacks. To that effect they propose to use another l-bit table for storing
the carry (recalled in Algorithm 9).

Algorithm 9 Coron-Tchulkine A→B Conversion: Carry LUT
Input:
Output: Table C and used random number s
1: s← rand(k)
2: for a := 0 to 2k − 1 do
3: C[a]← s+ carry(a, r) mod 2(p−1)·l . carry(a, b) returns the carry from a+ b
4: end for
5: return C, s
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We can then compute A1 using the following formula:

A1 = A1 + C[A2]− s mod 2(p−1)·l

Now x′2 can be directly computed using the lookup table created by Algorithm
8. Namely,

x′2 = (T [A2]⊕R2)⊕ r2

= (x2 ⊕ r2 ⊕R2)⊕ r2

= x2 ⊕ r2

This gives the last l-bits of the Boolean share x′. The same process can be
applied to A1, R1 to get the next l-bits of x′ and by recursive application we can
obtain the full k-bits of x′. We recall the full algorithm in Algorithm 10.

Algorithm 10 Coron-Tchulkine A→B Conversion
Input: Operand size k, arithmetic shares A,R such that x = A+R mod 2k, Tables T,C,

random numbers r, s from Algorithm 8 and Algorithm 9
Output: x′, R such that x = x′ ⊕R
1: A← A− r mod 2k

2: A← A+R2 mod 2k . R = R1||R2, R1 : ((p− 1) · l)-bit and R2 is l-bit
3: if p = 0 then
4: x′ ← (T [A]⊕R2)⊕ r
5: return x′

6: else
7: A← A1||A2
8: end if
9: A1 ← A1 + C[A2] mod 2(p−1)·l

10: A1 ← A1 − s mod 2(p−1)·l

11: x′2 ← (T [A2]⊕R2)⊕ r
12: x′1 ← Coron A→B Conversion ((p− 1) · l, A1, R1, T, C, r, s)
13: x′ ← x′1||x′2
14: return x′

Flaw in Coron-Tchulkine Method The above algorithm doesn’t work as ex-
pected in certain cases as shown by Blandine Debraize in [Deb12]. Assume that
following conditions hold simultaneously:

1. p > 2

2. s = 2l

3. carry in step 9 is 1

It implies that in the initial call to the conversion function, we have:

A1 > 2l

A1 + s mod 2(p−1)·l < A1

A1 + C[A2]− s 6= A1 + 1
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which is not the expected result. Debraize also provided a fix to the flaw that makes
the algorithm significantly slower. To overcome this limitation, a new method was
proposed in the same paper which is recalled below.

2.6.2 Debraize Solution

In this subsection we recall the algorithm proposed by Debraize to efficiently con-
vert from arithmetic to Boolean masking secure against first-order attacks[Deb12].
In contrast to the earlier methods which use arithmetic masks, carries here are
protected by Boolean masks. The two tables from Coron-Tchulkine’s algorithm are
combined into one. The combined Table T has entries for both the carry and no
carry cases and are differentiated by a random bit ρ. The entry for the no carry
case for input a and random number r is given as

T [ρ||a] = (a+ r)⊕ (ρ||r)

and for the carry case it is given as

T [(ρ⊕ 1)||a] = (a+ r + 1)⊕ (ρ||r).

Namely, in case of carry the table entry corresponding to the carry would be ρ+ 1
and ρ for the no carry case. The algorithm to create the lookup table is recalled in
Algorithm 11.

Algorithm 11 Debraize Table Creation
Input:
Output: Table T , r, ρ
1: r ← rand(k)
2: ρ← rand(1)
3: for a = 0 to 2k − 1 do
4: T [ρ||a]← (A+ r)⊕ (ρ||r)
5: T [(ρ⊕ 1)||a]← (A+ r + 1)⊕ (ρ||r)
6: end for
7: return T, r, ρ

Similar to Coron-Tchulkine method, the input arithmetic share is processed in
words of l bits. For ith arithmetic word Ai, the corresponding Boolean share xi1 is
retrieved from the table by accessing the entry (β||(Ai−r)+Ri), and later XORing
with Ri and r. Here β is the Boolean mask of the carry. Initially β is set to ρ and
after conversion of every word, it is modified according to the carry arising from
that word. We recall the full algorithm in Algorithm 12.



36 Masking

Algorithm 12 Debraize A→B Conversion
Input: Arithmetic shares: A,R and r, ρ from precomputed table
Output: Boolean shares: x1, x2
1: A← A− (r|| · · · ||r) mod 2n

2: β ← ρ
3: for i = 0 to p− 1 do
4: Split A into Ah||Al and R into Rh||Rl such that Al and Rl of size k
5: A← A+Rl mod 2(n−i)·k

6: β||x1i
← T [β||Al]

7: x1i ← x1i ⊕Rl

8: A← Ah

9: R← Rh

10: end for
11: x1 = (x0

1||x1
1|| · · · ||xi

1)⊕ (r||r|| · · · ||r)
12: x2 = R
13: return x1, x2



Chapter 3

Secure Conversion between
Boolean and Arithmetic
Masking of Any Order

The current solutions to convert between Boolean and arithmetic masking are secure
against only first-order attacks. This chapter presents and evaluates new conversion
algorithms that are secure against attacks of any order. To set the context, we
show that a straightforward extension of first-order conversion schemes to second
order is not possible. Then we introduce our new algorithms to convert between
Boolean and arithmetic masking. To convert masks of a size of k bits securely
against attacks of order n, the proposed algorithms have a time complexity of
O(n2k) in both directions and are proven to be secure in the Ishai, Sahai, and
Wagner (ISW) framework for private circuits. We evaluate our algorithms using
HMAC-SHA-1 as example and report the execution times we achieved on a 32-
bit AVR microcontroller. This is a joint work worth Jean-Sébastien Coron and
Johann Großschädl. A part of this work appeared in the proceedings of CHES 2014
[CGV14].
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3.1 Introduction
Security Model.

We definitely aim for countermeasures against side-channel attacks that can be
proven secure in a reasonable model of side-channel leakage (i.e. we will not be sat-
isfied with heuristic “ad-hoc” countermeasures). Perhaps the simplest such model is
the probing attack model proposed by Ishai, Sahai and Wagner (ISW) at CRYPTO
2003 [ISW03] (see Section 3.3). They initiated the theoretical study of securing
circuits against an adversary who can probe its wires. In this model, the attacker
is allowed to access at most t wires of the circuit, but he should not be able to
learn anything about the secret key. The authors show that any circuit C can be
transformed into a new circuit of size O(t2 · |C|) that is resistant against such an
adversary. The approach is based on secret-sharing every variable x into n shares
xi with x = x1 ⊕ x2 · · · ⊕ xn, and processing the shares in a way so that no infor-
mation about the initial variable x can be learned by any t-limited adversary, for
n ≥ 2t+ 1.

In recent years, numerous papers on provable security against side-channel at-
tacks have been published in the literature, forming the rapidly emerging field of
leakage-resilient cryptography. Building upon the leakage model introduced by Mi-
cali and Reyzin [MR04] and on the bounded retrieval model [CLW06, Dzi06], the
leakage resilience model assumes that the adversary has the ability to repeatedly
learn arbitrary functions of the secret key, as long as the total number of bits leaked
to the adversary is bounded by some parameter L. This is a very strong security no-
tion because an attacker can choose arbitrary leakage functions; only the amount
of leaked information is bounded. In particular, it is more general than the ISW
probing model [ISW03], in which the attacker has only access to a limited number
of physical bits computed in the circuit.

However, cryptosystems proven secure in the most general leakage-resilient
model are often too inefficient for practical use. In practice, one typically has to de-
sign a countermeasure against side-channel attacks for an existing algorithm (such
as AES or HMAC-SHA-1) instead of devising a completely new algorithm based on
the principles of leakage-resilient cryptography. The main advantage of the ISW
probing model is that it can potentially lead to relatively practical designs. Another
benefit is its interplay with resistance against power analysis attacks. Namely, if
a given algorithm is proven resistant against t probes in the ISW model, then (at
least) t + 1 measurements in a power acquisition must be combined to obtain the
key. As shown in [CJRR99], the number of power acquisitions required to recover
the key grows exponentially with t. This means that, even if a real probing attack
would be physically impossible or too costly, it makes sense to obtain countermea-
sures with the largest possible value of t since this translates into an (exponentially
in t) increasing level of security against power attacks. In this chapter, we mainly
work in the ISW model.

Proving the resistance of a countermeasure against a single-probe attack (or a
first-order attack) is usually straightforward since it suffices to show that all inter-
mediate variables are uniformly distributed (or, at least, that their distribution is
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independent from the secret key) as in this case a single probe reveals no infor-
mation to the attacker. To prove resistance against t probes, one should a priori
consider every possible t-tuple of variables and show that their joint distribution is
independent from the secret key. This approach has been used to prove the security
of algorithms against second-order attacks [RDP08]. However, as the number of
such t-tuples grows exponentially with t, this analysis becomes unfeasible, even for
small values of t. To work around this problem, Ishai, Sahai and Wagner intro-
duced in [ISW03] a very practical simulation framework in which one shows how
to simulate any set of t wires probed by the adversary from a subset of the input
shares of the transformed circuits. Since any proper subset of these input shares
can be simulated without knowledge of the input values in the original circuit, a
perfect simulation of the t probed wires is possible. We follow the same approach
in this chapter.

Our Contribution.

Currently, there exists no practical conversion technique that works for masking of
order two or higher. The present chapter attempts to fill this gap. We introduce the
first conversion algorithms between Boolean and arithmetic masking that are secure
against t-th order attacks (instead of first-order only). We start with the problem
of how to apply arithmetic operations directly on Boolean shares and present an
algorithm for secure addition modulo 2k with n shares (where n ≥ 2t+ 1) that has
a complexity of O(n2k). Then, we introduce algorithms to convert from Boolean
to arithmetic masking and vice versa, again with a complexity of O(n2k) in both
directions. These algorithms are proven secure in the Ishai, Sahai and Wagner
(ISW) framework for private circuits [ISW03].

We apply our countermeasures to protect HMAC-SHA-1 against second and
third-order attacks. We implemented and evaluated all our masking schemes on a
32-bit AVR processor. Based on a detailed performance analysis, we identify the
most efficient algorithms in practice for different levels of security.

Organization.

We first show that a straightforward application of Goubin’s method is insecure for
second-order conversion in Section 3.2. We then briefly recall the ISW framework
that we use to prove our algorithms in Section 3.3. Our solutions to securely
perform addition on Boolean shares are given in Section 3.4. The algorithms for
secure conversion from arithmetic to Boolean masking and Boolean to arithmetic
masking are presented in Section 3.5 and Section 3.6 respectively. Section 3.7 gives
the implementation results on a 32-bit microcontroller.

3.2 Applying Goubin’s Conversion to Second Order

In this section, we demonstrate that a straightforward application of Goubin’s con-
version technique [Gou01] to the second order does not work. Assume we have
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three Boolean shares x1, x2, x3 whereby x = x1 ⊕ x2 ⊕ x3. We need to find the
arithmetic shares A1, A2, and A3 such that x = A1 + A2 + A3 mod 2n. To do so,
we can iteratively compute A1, A2, A3 as follows:

x = A1 + (x2 ⊕ x3)
x = A1 +A2 + x3

A1 = x− (x2 ⊕ x3)
A2 = (x2 ⊕ x3)− x3

A3 = x3

Based on the above, we can compute A1 in the following way:

A1 = x1 ⊕ (x2 ⊕ x3)− (x2 ⊕ x3) = φx1(x2 ⊕ x3)
= φx1(x2)⊕ φx1(x3)⊕ x1.

One could try to securely compute φx1(x2) and φx1(x3) as follows:

φx1(x2) = φx1(x2 ⊕ r)⊕ φx1(r)⊕ x1

φx1(x3) = φx1(x3 ⊕ r)⊕ φx1(r)⊕ x1.

This means,

A1 = φx1(x2 ⊕ r)⊕ φx1(r)⊕ φx1(x3 ⊕ r)⊕ φx1(r)⊕ x1

= φx1(x2 ⊕ r)⊕ φx1(x3 ⊕ r)⊕ x1

= ((x1 ⊕ x2 ⊕ r)− (x2 ⊕ r))⊕ ((x1 ⊕ x3 ⊕ r)− (x3 ⊕ r))⊕ x1.

But we can combine the leakages from x1 ⊕ x2 ⊕ r and x3 ⊕ r to get x1 ⊕ x2 ⊕
x3 = x, inducing a second order attack. Similarly, we can combine the leakages
from x1 ⊕ x3 ⊕ r and x2 ⊕ r to get x1 ⊕ x2 ⊕ x3 = x. Now, let us consider the
case where we use a different random ri for computing each φxi(xj), i.e.

φx1(x2) = φx1(x2 ⊕ r1)⊕ φx1(r1)⊕ x1

φx1(x3) = φx1(x3 ⊕ r2)⊕ φx1(r2)⊕ x1.

This means,

A1 = φx1(x2 ⊕ r1)⊕ φx1(r1)⊕ φx1(x3 ⊕ r2)⊕ φx1(r2)⊕ x1.

Now, when computing A1, regardless of what sequence we choose, we would be
leaking the secret x while combining the results. For example, assume that we
calculate according to the following sequence:

φx1(r1)⊕ φx1(x3 ⊕ r2)⊕ φx1(r2) = φx1(x3 ⊕ r1)
= ((x1 ⊕ x3 ⊕ r1)− (x3 ⊕ r1))

Let us further assume that φx1(x2 ⊕ r1) is calculated as follows:

φx1(x2 ⊕ r1) = ((x1 ⊕ x2 ⊕ r1)− (x2 ⊕ r1))

Then, we can combine the leakages from x1 ⊕ x2 ⊕ r1 and x3 ⊕ r1 to find the value
of x. From this, we conclude that the straightforward application of the method of
Goubin does not work for second order.
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3.3 The Ishai, Sahai and Wagner Framework
In this section we describe the framework of Ishai, Sahai and Wagner (ISW) [ISW03]
for proving the security against an adversary observing at most t variables within
a circuit. We will use this framework in Section 3.5 and in Section 3.6 to prove the
security of our conversion algorithms.

A stateless circuit over F2 can be defined as a directed acyclic graph whose
sources and sinks are input and output variables, respectively, while its vertices
are Boolean gates [Cor14]. Such a stateless circuit can be augmented with random-
bit gates to form a randomized circuit. As stated in [ISW03], a random-bit gate has
no input and produces as output a uniformly random bit at each new invocation
of the circuit. A t-limited adversary can probe up to t wires in the circuit, and
has unlimited computational power. Given a stateless circuit C, we must transform
it into a new circuit C ′ that can resist such an adversary. However, this is only
possible if the inputs and outputs of the new circuit C ′ are hidden since an input
of C might contain some secret-key bits and by probing these bits the adversary
can obtain information about the secret key. Therefore, we allow the use of a
randomized input encoder I and output decoder O, whose wires can not be probed
by the adversary. Both I and O should be independent from the circuit C being
transformed.
Definition 3.1. Let T be an efficiently computable, deterministic function mapping
a stateless circuit C to a stateless circuit C ′, and let I, O be input and output de-
coder, respectively. (T, I,O) is said to be a t-private stateless transformer if it
satisfies soundness and privacy, defined as follows:
• Soundness: C and O ◦ C ′ ◦ I have identical input-output functionality.

• Privacy: the values of any t wires of C ′ can be efficiently simulated without
access to any wire of C ′.

In our conversion algorithms we will often work with k-bit variables (for some fixed
parameter k) instead of single bits; in this case probing one such variable will
automatically reveal its k-bit value instead of a single bit. Clearly, this can only
make the adversary stronger.

The ISW framework also includes definitions for stateful circuits, i.e. circuits
with memory gates. As shown in [ISW03], achieving privacy for stateful circuits is
easy once privacy has been achieved in the stateless model. Thus, we focus on the
stateless model in our work. We recall the main theorem from [ISW03] below.
Theorem 3.1 (Ishai, Sahai, Wagner [ISW03]). There exists a perfectly t-private
stateless transformer (T, I,O) such that T maps any stateless circuit C of size |C|
and depth d to a randomized stateless circuit of size O(n2 · |C|) and depth O(d log t),
where n = 2t+ 1.

Privacy for Stateless Circuits.

For an arbitrary circuit C the corresponding circuit C ′ is constructed by maintaining
the following invariant: for each wire in the circuit C, there are n wires in C ′, which
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add up to the value on the wire in C. Without loss of generality, any circuit C
can be represented using NOT and AND gates only. Thus, if we can transform
these two gates, the whole circuit is transformable. It is easy to transform a NOT
gate using the following simple relation: If x = x1 ⊕ x2 ⊕ · · · ⊕ xn then NOT(x) =
NOT(x1)⊕ x2⊕ · · · ⊕ xn. To transform AND gates, the authors present an elegant
solution, which is shown in Algorithm 13.

Algorithm 13 ISWSecAnd
Input: (xi) and (yi) for 1 ≤ i ≤ n
Output: (zi) for 1 ≤ i ≤ n, with

n⊕
i=1

zi =
n⊕
i=1

xi ∧
n⊕
i=1

yi

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j ← rand(1)
4: rj,i ← (ri,j ⊕ (xi ∧ yj))⊕ (xj ∧ yi)
5: end for
6: end for
7: for i = 1 to n do
8: zi = xi ∧ yi
9: for j = 1 to n do

10: if i 6= j then
11: zi ← zi ⊕ ri,j
12: end if
13: end for
14: end for

3.4 Secure Addition on Boolean Shares

In this section, we describe algorithms that can be used to perform an addition
(or a subtraction) on the Boolean shares directly, thereby eliminating the need to
convert masks from one form to the other. Formally, given n Boolean shares of
x = x1 ⊕ · · · ⊕ xn and y = y1 ⊕ · · · ⊕ yn, we need to compute n Boolean shares of
z = z1 ⊕ · · · ⊕ zn satisfying the relation z = x+ y, i.e.

z1 ⊕ · · · ⊕ zn = (x1 ⊕ · · · ⊕ xn) + (y1 ⊕ · · · ⊕ yn)

We propose two algorithms to solve this problem based on the ISW method.

3.4.1 First Variant

The first solution is obtained by transforming the k-bit addition circuit into a
circuit of XOR and AND gates so that the the ISW technique can be applied
directly [ISW03]. A modular addition of two k-bit variables x and y can be defined
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Figure 3.1: Recursive carry computation

recursively as (x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i), where{
c(0) = 0
∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1)) (3.1)

Here, x(i) denotes the i-th bit of variable x, with x(0) being the least significant bit
(refer to Figure 3.1). Since this recursion formula involves solely XOR and AND
operations, we can simply use the ISW approach from [ISW03] to protect it against
attacks of any order. The resulting algorithm is shown in Algorithm 14.

Algorithm 14 SecAdd
Input: (xi) and (yi) for 1 ≤ i ≤ n
Output: (zi) for 1 ≤ i ≤ n, with

n⊕
i=1

zi =
n⊕

i=1
xi +

n⊕
i=1

yi

1: (c(0)
i )1≤i≤n ← 0 . Initially carry is zero

2: for j = 0 to k − 2 do . Compute carry bit by bit
3: (xy(j)

i )1≤i≤n ← ISWSecAnd((x(j)
i )1≤i≤n, (y(j)

i )1≤i≤n) . x(j) ∧ y(j)

4: (xc(j)
i )1≤i≤n ← ISWSecAnd((x(j)

i )1≤i≤n, (c(j)
i )1≤i≤n) . x(j) ∧ c(j)

5: (yc(j)
i )1≤i≤n ← ISWSecAnd((y(j)

i )1≤i≤n, (c(j)
i )1≤i≤n) . y(j) ∧ c(j)

6: (c(j+1)
i )1≤i≤n ← (xy(j)

i )1≤i≤n ⊕ (xc(j)
i )1≤i≤n ⊕ (yc(j)

i )1≤i≤n

7: end for
8: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ci)1≤i≤n . z = x+ y = x⊕ y ⊕ c
9: return (zi)1≤i≤n

Initially, there will be no carry; therefore, we set all n shares of the carry to zero
(Step 1). Next, we compute the carries for the remaining bits through the formula
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given in Equation (3.1). The loop runs from 0 to k−2 only, since the carry from the
last bit does not need to be computed in a modular addition. In Step 8 we apply
an XOR operation on the two inputs xi, yi and the carry ci to obtain the n shares
corresponding to x+y mod 2k. The algorithm ISWSecAnd has a time complexity of
O(n2) and, as a consequence, the full algorithm has a time complexity of O(n2k).
Algorithm 14 has to perform AND and XOR operations only. Due to the ISW
scheme, we already know that such a circuit is protected from attacks of order t,
where n ≥ 2t + 1. This proves the following theorem and shows the security of
Algorithm 14 in the ISW model.

Theorem 3.2. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 14 and
let 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of
indices such that |I| ≤ n− 1, whereby the shares x|I and y|I can perfectly simulate
those t intermediate variables as well as the output shares z|I .

3.4.2 Second Variant

The second approach is based on the recursion from Goubin’s theorem (Theo-
rem 2.3), which uses the relation x + y = x ⊕ y ⊕ uk−1, where uk−1 is obtained
from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (x⊕ y)⊕ (x ∧ y)]

Algorithm 15 presents the solution based on Goubin’s formula to compute the
addition. Here, the function ISWSecAnd is called with arguments of a size of k bits
instead of 1-bit arguments as in Algorithm 14. In this setting, the ISW scheme
has to be adapted as follows: (i) all 1-bit variables defined over F2 are replaced by
k-bit variables defined over F2k ; (ii) the 1-bit XOR operations are replaced by k-bit
XOR operations; and (iii) the 1-bit AND operations are replaced by k-bit AND
operations. This extension still preserves the security of the original scheme. Note
that this method has been used before in the higher-order secure masking technique
for AES proposed by Rivain and Prouff [RP10].1
The time complexity of Algorithm 15 is still O(n2k). However, in practice, this
algorithm will be faster for two reasons: (i) the number of calls to the function
ISWSecAnd inside the loop is reduced from three to one, and (ii) all the operations
are directly performed on the k-bit variables instead of single bits, thus there is no
need to perform bit manipulations. Similar to Algorithm 14, it is easy to see that
the security of Algorithm 15 follows from the original ISW scheme.

Theorem 3.3. Let (xi)1≤i≤n and (yi)1≤i≤n be the input shares of Algorithm 15 and
let 2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of
indices such that |I| ≤ n− 1, whereby the shares x|I and y|I can perfectly simulate
those t intermediate variables as well as the output shares z|I .

1In the Rivain-Prouff masking scheme, the AND operations over F2 were replaced with multi-
plications over F2k instead of AND operations over F2k .



3.5 Secure Arithmetic to Boolean Masking for Any Order 45

Algorithm 15 SecAddGoubin
Input: (xi) and (yi) for 1 ≤ i ≤ n
Output: (zi) for 1 ≤ i ≤ n, with

n⊕
i=1

zi =
n⊕

i=1
xi +

n⊕
i=1

yi

1: (wi)1≤i≤n ← ISWSecAnd((xi)1≤i≤n, (yi)1≤i≤n) . ω = x ∧ y
2: (ui)1≤i≤n ← 0 . Initialize shares of u to zero
3: (ai)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n . a = x⊕ y
4: for j = 1 to k − 1 do
5: (uai)1≤i≤n ← ISWSecAnd

(
(ui)1≤i≤n, (ai)1≤i≤n

)
6: (ui)1≤i≤n ← (uai)1≤i≤n ⊕ (wi)1≤i≤n

7: (ui)1≤i≤n ← 2(ui)1≤i≤n . u← 2(u ∧ a⊕ ω)
8: end for
9: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ui)1≤i≤n . z = x+ y = x⊕ y ⊕ u

10: return (zi)1≤i≤n

3.5 Secure Arithmetic to Boolean Masking for Any Or-
der

In this section, we describe two new algorithms for conversion from arithmetic to
Boolean masking of any order. That is, given n arithmetic shares with the property
x = A1+· · ·+An, our algorithms output the corresponding Boolean shares satisfying
x = x1 ⊕ · · · ⊕ xn, secure against attacks of order t, where 2t ≤ n− 1. We describe
in Section 3.6 the algorithm for secure conversion in the other direction, i.e. from
Boolean to arithmetic masking.

We first present a straightforward algorithm with complexity O(n3k), where
n and k are the number of shares and the register size, respectively. Then, we
give an improved algorithm with a complexity of O(n2k). Internally, both algo-
rithms use the secure addition function we described in Section 3.4. Though it is
more efficient in practice to perform secure addition directly on Boolean shares (due
to the overhead of converting between the masks twice), such conversion algorithms
may still be useful, e.g. when the required number of conversions is lower than the
required number of secure additions.2

3.5.1 A Simple Algorithm with Complexity O(n3k)

We first describe a simple approach for converting from arithmetic to Boolean mask-
ing with complexity O(n3k). Assume that a sensitive variable x is shared among n
arithmetic masks as follows:

x = A1 + · · ·+An (3.2)

We separately re-share each of the arithmetic shares Ai (1 ≤ i ≤ n) into n random
Boolean shares xi,j (1 ≤ j ≤ n) so that Ai = xi,1 ⊕ · · · ⊕ xi,n. Hence, the sensitive

2For HMAC-SHA-1, it is more efficient to perform secure addition directly on the Boolean
shares, as we will show later.
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Figure 3.2: Arithmetic to Boolean conversion: Simple solution

variables x is now given as:

x = (x1,1 ⊕ · · · ⊕ x1,n) + · · ·+ (xn,1 ⊕ · · · ⊕ xn,n) (3.3)

For each arithmetic share Ai (1 ≤ i ≤ n), such re-sharing can be accomplished
by generating xi,j independently at random for 2 ≤ j ≤ n and letting xi,1 =
Ai ⊕ xi,2 ⊕ · · · ⊕ xi,n. We then sequentially add the Ai’s using their n-Boolean
shared representation Ai =

⊕n
j=1 xi,j . For this, we use either the SecAdd or the

SecAddGoubin algorithm from Section 3.4. Eventually, we get the final result x in
Boolean form as

x = z1 ⊕ · · · ⊕ zn (3.4)

This procedure is shown pictorially in Figure 3.2. Since each of the n − 1 calls
to SecAdd has a complexity of O(n2k), the overall complexity of the arithmetic to
Boolean conversion is O(n3k).

Theorem 3.4. Let (Ai)1≤i≤n be the input shares of the previous algorithm and let
2t < n. For any set of t intermediate variables, there exists a subset I ⊂ [1, n] of
indices such that |I| ≤ 2t < n, whereby the shares A|I can perfectly simulate those
t intermediate variables as well as the output shares z|I .

Proof. We show how to simulate any set of t probes, for 2t < n. We firstly consider
the initial re-sharing of the arithmetic shares Ai (1 ≤ i ≤ n). At first, the set I is
empty. If there is a probe in the re-sharing of Ai, we add the index i to I. Then,
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we consider the second part of the algorithm, starting from Equation (3.3) to the
final result given by Equation (3.4). This second part is essentially an iteration
of a circuit obtained through the ISW transform. Therefore, by applying the ISW
methodology, we can simply continue with the construction of the subset I, so that
any probe in this second part, and any of the output shares z|I , can be perfectly
simulated by knowing the inputs xi,j for j ∈ I and for all 1 ≤ i ≤ n; moreover, we
know from the ISW methodology that |I| ≤ 2t < n.

For any i /∈ I, since the re-sharing of Ai is not probed, we can perfectly simulate
the xi,j for j ∈ I without knowing Ai. Namely, since |I| ≤ 2t < n, the xi,j for
j ∈ I form a proper subset of n shares, and we can perfectly simulate such a
subset without knowing Ai by generating the values independently and uniformly
at random. For i ∈ I, we can simulate the xi,j in the same way as in the “real”
circuit because we know the input Ai. Therefore, as required, we can perfectly
simulate the xi,j for j ∈ I and all 1 ≤ i ≤ n.

In summary, the t probes as well as the output shares z|I can be perfectly
simulated from the knowledge of the input shares A|I , where |I| ≤ 2t < n.

It is easy to observe that one can improve the complexity of this algorithm by
using fewer shares at the beginning. In particular, Equation (3.3) contains a total
of n2 shares, while only n are necessary. Therefore, at the beginning, we use only
two shares for every Ai instead of n shares. Then, we build a tree where at each
layer the number of additive terms is divided by two, while the number of Boolean
shares within an additive term is doubled. In this way, the overall number of shares
remains n or 2n at each level, and so the complexity becomes O(n2k) instead of
O(n3k). We provide a complete description below.

3.5.2 Our New Arithmetic to Boolean Conversion Algorithm

In this section, we describe our new algorithm for converting from arithmetic to
Boolean masking with a complexity of O(n2k). Our algorithm is best described
recursively. Assume that we already found an algorithm An/2 for converting a set
of n/2 arithmetic shares Ai into n/2 Boolean shares xi such that

A1 + · · ·+An/2 = x1 ⊕ · · · ⊕ xn/2.

Now, given as input a variable x represented with n arithmetic shares Ai:

x = A1 + · · ·+An

we can first apply algorithm An/2 separately on the two halves to get

x = (A1 + · · ·+An/2) + (An/2+1 + · · ·+An)

= (x1 ⊕ · · · ⊕ xn/2) + (y1 ⊕ · · · ⊕ yn/2)

We now apply a simple expansion step, in which the n/2 shares xi and yi are each
expanded to n shares. This can be done by randomly splitting every share xi into
xi = x′2i−1 ⊕ x′2i and similarly for yi = y′2i−1 ⊕ y′2i. We obtain:

x = (x′1 ⊕ · · · ⊕ x′n) + (y′1 ⊕ · · · ⊕ y′n)



48 Secure Conversion between Boolean and Arithmetic Masking of Any Order

b b b

b b bA1 A2 An

x1,1 ⊕ x1,2 x2,1 ⊕ x2,2

Expand Expand Expand

SecAdd

y1,1 ⊕ y1,2

⊕
1≤i≤n(y

′
1,i)

SecAdd

A1 + · · ·+An = z1 ⊕ · · · ⊕ zn

A1 +A2

A1 + · · ·+A⌈n/2⌉

xn,1 ⊕ · · · ⊕ xn,n

b

b

b

y′
1,1 ⊕ y′

1,2 ⊕ y′
1,3 ⊕ y′

1,4

Expand

⊕
1≤i≤n(y

′
2,i) A⌈n/2⌉+1 + · · ·+An

b

b

b

Figure 3.3: Arithmetic to Boolean conversion: Efficient solution

Then, we apply the n-Boolean addition circuit SecAdd or SecAddGoubin from Sec-
tion 3.4 to obtain x represented with n Boolean shares x = z1⊕· · ·⊕ zn as required
(refer to Figure 3.3).

We now show that the algorithm has a complexity of O(n2k). For the sake
of simplicity, we assume that n is a power of two. Let Ti be the execution time
of Ai, which takes i arithmetic shares as input. We proceed by induction, based
on the assumption that Ti ≤ c · i2 for all i ≤ n/2 and some constant c. When
running algorithm An with n shares, one first applies An/2 on both halves, and
then executes the expansion step (with 3n steps). Finally, the SecAdd algorithm is
performed, which gives:

Tn ≤ 2Tn/2 + 3n+ c′ · n2 ≤ 2c · (n/2)2 + 3n+ c′ · n2

for some constant c′, such that the execution time of SecAdd with n shares is ≤ c′·n2.
We get:

Tn ≤ (c/2 + 3 + c′) · n2

Hence, it suffices to fix the constant c so that 3 + c′ ≤ c/2 to get Tn ≤ c · n2 as
required to prove the result. A formal description of our new conversion method
can be found in Algorithm 16, which, in turn, uses the expansion step specified in
Algorithm 17. The following theorem confirms that Algorithm 16 is secure in the
ISW framework.

Theorem 3.5. Let (Ai)1≤i≤n be the input shares of Algorithm 16. For any set of
t intermediate variables and any k output shares, there exists a subset I ⊂ [1, n] of
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Algorithm 16 ConvertA→B
Input: (Ai) for 1 ≤ i ≤ n
Output: (zi) for 1 ≤ i ≤ n, with

n⊕
i=1

zi =
n∑

i=1
Ai

1: If n = 1 then return A1
2: (xi)1≤i≤n/2 ← ConvertA→B

(
(Ai)1≤i≤n/2)

)
3: (x′i)1≤i≤n ← Expand

(
(xi)1≤i≤n/2)

)
.

n⊕
i=1

x′i =
n/2⊕
i=1

xi =
n/2∑
i=1

Ai

4: (yi)1≤i≤n/2 ← ConvertA→B
(
(Ai)n/2+1≤i≤n)

)
5: (y′i)1≤i≤n ← Expand

(
(yi)1≤i≤n/2)

)
.

n⊕
i=1

y′i =
n/2⊕
i=1

yi =
n∑

i=n/2+1
Ai

6: (zi)1≤i≤n ← SecAdd ((x′i)1≤i≤n, (y′i)1≤i≤n)
7: return (zi)1≤i≤n .

n⊕
i=1

zi =
n⊕

i=1
x′i +

n⊕
i=1

y′i =
n∑

i=1
Ai

Algorithm 17 Expand
Input: xi for 1 ≤ i ≤ n

Output: yi for 1 ≤ i ≤ 2n with
2n⊕

i=1
yi =

n⊕
i=1

xi

1: (ri)1≤i≤n ← Rand(k)
2: (y2i)1≤i≤n ← (xi ⊕ ri)1≤i≤n

3: (y2i+1)1≤i≤n ← (ri)1≤i≤n

4: return (yi)1≤i≤2n

indices such that |I| ≤ k + 2t, where the shares A|I can perfectly simulate those t
intermediate variables as well as the output shares x|I .

Proof. We first prove the following property of the Expand method.

Lemma 3.1. In Algorithm 17, a set of k outputs (k ≤ 2n) and t probes (t ≤ n)
can be perfectly simulated using at most bk/2c+ t inputs.

Proof of Lemma 3.1. We proceed by induction. When n = 1, the algorithm gets
only x as input and outputs (x⊕ r, r) for a uniformly random r. Now, we have to
distinguish between the following two cases: there is no probe (t = 0), and there is at
least one probe (t ≥ 1).

In the latter case, i.e. there is at least one probe (for x, or r, or x ⊕ r), then
t ≥ 1 and the probe can be perfectly simulated by using the input x and gener-
ating r uniformly at random. This will also perfectly simulate both outputs. As a
consequence, for t = 1 and any k with 0 ≤ k ≤ 2, we can perfectly simulate the t
probes and the k outputs using at most 1 ≤ bk/2c+ t inputs.

We now assume that there are no probes (t = 0). If no output needs to be
simulated (i.e. k = 0), then knowledge of the input x is not required. If only a
single output must be simulated (k = 1), where either y1 = x ⊕ r or y2 = r has
to be simulated, such output can be perfectly simulated by generating a random
number uniformly, without knowing x. Finally, if k = 2, then one input is required.
Therefore, for any k with 0 ≤ k ≤ 2, the number of required inputs is always at
most bk/2c+ t.
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For n > 1, let us consider the i-th sub-circuit and denote the number of outputs
to be simulated by ki and the number of probes by ti for 1 ≤ i ≤ n. Based on the
above arguments, the total number of inputs needed for the simulation is then at
most

n∑
i=1
bki/2c+ ti ≤ bk/2c+ t,

which finally proves the Lemma.

The proof of Theorem 3.5 is obtained via induction on the number of shares
n. We assume that the result holds for n/2 and prove that it holds for n. We
distinguish among 5 sets of probes:

• The tA probes for the Secure Addition subroutine (Line 6 of Algorithm 16).

• The tEL and tER probes for the left and right Expand circuit, respectively
(lines 3 and 5 of Algorithm 16).

• The tCL and tCR probes for the left and right Arithmetic to Boolean conver-
sion circuit, respectively (lines 2 and 4 of Algorithm 16).

From the security proof of the ISWSecAnd algorithm given in [ISW03], we know
that a set of k outputs and tA probes can be simulated using a subset of k + 2tA
inputs in each of the two input shares x′i and y′i. Therefore, the property also holds
for the SecAdd algorithm.

According to Lemma 3.1, a set of k + 2tA outputs and tEL (resp. tER) probes
can be simulated using at most b(k + 2tA)/2c + tEL = bk/2c + tA + tEL inputs
(resp. bk/2c + tA + tER inputs). Since the result is assumed to hold for n/2, the
bk/2c+ tA+ tEL outputs and the tCL probes of the left conversion can be simulated
using at most bk/2c + tA + tEL + 2tCL inputs. An upper bound of the number of
inputs for the right conversion can be derived in the same way. As a consequence,
the total number of required inputs is at most k + 2t according to the following
equation

|I| ≤ bk/2c+ tA + tEL + 2tCL + bk/2c+ tA + tER + 2tCR
≤ k + 2(tA + tEL + tER + tCL + tCR)
≤ k + 2t,

which proves Theorem 3.5.

3.6 From Boolean to Arithmetic Masking of Any Order

We now present a new algorithm for converting in the other direction, i.e. from
Boolean to arithmetic masking, again with a complexity of O(n2k). Algorithm
18 specifies our arithmetic-to-Boolean conversion in detail.
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Algorithm 18 ConvertB→A
Input: (xi) for 1 ≤ i ≤ n
Output: (Ai) for 1 ≤ i ≤ n, with

n∑
i=1

Ai =
n⊕

i=1
xi

1: (Ai)1≤i≤n−1 ← Rand(k)
2: (A′i)1≤i≤n−1 ← (−Ai)1≤i≤n−1, A

′
n ← 0

3: (yi)1≤i≤n ← ConvertA→B
(
(A′i)1≤i≤n

)
.

n⊕
i=1

yi =
n∑

i=1
A′i = −

n−1∑
i=1

Ai

4: (zi)1≤i≤n ← SecAdd
(
(xi)1≤i≤n, (yi)1≤i≤n

)
.

n⊕
i=1

zi =
n⊕

i=1
xi +

n⊕
i=1

yi

5: An ← FullXor
(
(zi)1≤i≤n

)
. An =

n⊕
i=1

zi =
n⊕

i=1
xi −

n−1∑
i=1

Ai

6: return (Ai)1≤i≤n. .
n∑

i=1
Ai =

n⊕
i=1

xi

We use the same randomized XOR method as in [Cor14] to compute An ←
n⊕
i=1

zi;
we recall this method in Algorithm 19. The randomized XOR method, in turn, uses
Algorithm 20 (which was first proposed by Rivain and Prouff [RP10]) to refresh the
masks.

Algorithm 19 FullXor
Input: y1, . . . , yn
Output: y such that y = y1 ⊕ · · · ⊕ yn
1: for i = 1 to n do (y1, . . . , yn)← RefreshMasks(y1, . . . , yn)
2: return y1 ⊕ · · · ⊕ yn

Algorithm 20 RefreshMasks
Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for j = 2 to n do
2: tmp← Rand(k)
3: z1 ← z1 ⊕ tmp
4: zj ← zj ⊕ tmp
5: end for
6: return z1, . . . , zn

The following theorem proves the security of Algorithm 18 in the ISW model.

Theorem 3.6. Let (xi)1≤i≤n be the input shares of Algorithm 18. For any set of
t intermediate variables with 2t < n, there exists a subset I ⊂ [1, n] of indices such
that |I| ≤ 2t, whereby the shares x|I can perfectly simulate those t intermediate
variables as well as the output shares A|I .

We recall the following Lemma from [Cor14] (with |I| ≤ t instead of |I| ≤ 2t)
and its proof.
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Lemma 3.2. Let (yi)1≤i≤n be the input shares of the FullXor algorithm. For any
set of t intermediate variables, there exists a subset I ⊂ [1, n] of indices such that
|I| ≤ t and the distribution of those t variables can be perfectly simulated from y|I
and y = y1 ⊕ · · · ⊕ yn.

Proof of Lemma 3.2. We first consider the series of n RefreshMasks. If any variable
yj is probed inside any of the RefreshMasks, we add j to I.

Moreover since t < n, there must be at least one RefreshMasks that is not probed
at all; let i∗ be the index of this RefreshMasks. Since we know y = y1 ⊕ · · · ⊕ yn,
we can perfectly simulate all the shares (yi)1≤i≤n after this i∗-th RefreshMasks.
Therefore we can perfectly simulate all yi’s until the last RefreshMasks, and all
intermediate variables for computing y = y1 ⊕ · · · ⊕ yn.

In summary before the i∗ RefreshMasks, with the knowledge of the input shares
y|I , we can perfectly simulate all intermediate variables yj for j ∈ I, and after the
i∗ RefreshMasks we can perfectly simulate all intermediate variables. Finally the
tmp variables are simulated as in the real circuit. This proves Lemma 3.2.

From Lemma 3.2, the set of t1 probes in the FullXor circuit computing An =⊕n
i=1 zi can be simulated from An and at most t1 inputs zi. From the previous

lemmas, those t1 inputs zi and the t2 probes in the remaining circuit can be perfectly
simulated using x|I , for I ⊂ [1, n], where |I| ≤ t1 + 2t2. If t1 > 0 we add n to I; we
still have |I| ≤ 2t where t = t1 + t2.

It remains to show how we can simulate An, as this is required for the simulation
in Lemma 3.2 if t1 > 0, or if t1 = 0 and n ∈ I, since we must simulate all outputs
A|I . We select an arbitrary i0 /∈ I such that i0 6= n; this is possible since in both
cases we have n ∈ I and |I| ≤ 2t < n. We have:

An =

x− n−1∑
i=1
i 6=i0

Ai

−Ai0
Since i0 /∈ I the variable Ai0 does not enter in any computation of the simulation.
Since in the real circuit Ai0 is generated uniformly at random, we can simulate An
by generating a uniform random value. This proves Theorem 3.6.

3.7 Implementation Results
We have implemented all the solutions proposed in this chapter on a 32-bit AVR
microcontroller for security level t = 2, 3. We then applied all these techniques
to HMAC-SHA-1 and compared the running time with respect to an unmasked
implementation. Table 3.1 gives the running time of the addition and conversion
algorithms along with the number of calls to the rand function for security level
t = 2, 3. As expected, the addition algorithms using Goubin’s theorem (i.e. the
second variant presented in Section 3.4.2) outperform the first variant (given in
Section 3.4.1) which can be observed in Figure 3.4. Therefore, we applied the
second variant to implement the secure conversion algorithms.
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Table 3.1: Execution times of all algorithms (in thousands of clock cycles) for
t = 2, 3 and the number of calls to the rand function

Algorithm Time rand
second-order addition

Algorithm 14 87 1240
Algorithm 15 26 320

second-order conversion
Algorithm 16 54 484
Algorithm 18 81 822

third-order addition
Algorithm 14 156 2604
Algorithm 15 46 672

third-order conversion
Algorithm 16 121 1288
Algorithm 18 162 1997

HMAC-SHA-1.

The hash function SHA-1 operates on blocks of 512 bits and produces a 160-bit
message digest. Each message block is divided into 16 words of 32-bits each, which
are extended to produce 64 further words (i.e. the total number of words is 80).
The main loop contains 80 iterations corresponding to each of these 80 words. In
order to protect HMAC-SHA-1 against side-channel attacks, we follow two different
approaches, which are summarized below.

In the first approach, we use Boolean masking and perform secure addition on
Boolean shares directly whenever required. Every iteration of the main loop requires
four 32-bit additions, which amounts in a total of 320 additions for 80 iterations.
Moreover, five additions have to be performed at the end to update the state. So,
in total, 325 secure additions need to be carried out per message block.

In the other approach, we use Boolean masking and convert it to arithmetic
masking wherever necessary. In this case, we need four Boolean to arithmetic
conversions and one arithmetic to Boolean conversion per iteration, yielding a total
of 400 conversions for 80 iterations. Additionally, we need 10 conversions to update
the result, i.e. a total of 410 conversions per block are required. The execution
times of both approaches are summarized in Table 3.2. For both t = 2 and t = 3,
the implementation using SecAddGoubin algorithm produces the best results which
can be seen in Figure 3.5.
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Figure 3.4: Comparison of execution times of all algorithms (in thousands of clock
cycles) for t = 2, 3

Algorithm Time Penalty
HMAC-SHA-1 104 1

second-order addition
Algorithm 14 57172 549
Algorithm 15 17847 171

second-order conversion
Algorithm 16, 18 62669 602

third-order addition
Algorithm 14 106292 987
Algorithm 15 31195 299

third-order conversion
Algorithm 16, 18 127348 1224

Table 3.2: Execution times of second and third-order secure masking (in thousands
of clock cycles) and performance penalty compared to an unmasked implementation
of HMAC-SHA-1
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Chapter 4

Conversion from Arithmetic to
Boolean Masking with
Logarithmic Complexity

Goubin’s algorithm for converting from arithmetic to Boolean masking requires
O(k) operations where k is the addition bit size. In this chapter we describe im-
proved algorithm with time complexity O(log k) only. Our new algorithm is based
on the Kogge-Stone carry look-ahead adder, which computes the carry signal in
O(log k) instead of O(k) for the classical ripple carry adder. We also describe an
algorithm for performing arithmetic addition modulo 2k directly on Boolean shares,
with the same complexity O(log k) instead of O(k). We prove the security of our
new algorithm against first-order attacks. Our algorithm performs well in prac-
tice, as for k = 64 we obtain a 23% improvement compared to Goubin’s algorithm.
In Chapter 3 we gave the first solutions to perform conversion between Boolean
and arithmetic masking of any order. These algorithms have time complexity in
O(n2 · k) for n shares of k bits each. In this chapter we give new algorithms with
complexity O(n2 · log k) instead of O(n2 · k) for n shares, again using Kogge-Stone
carry look-ahead adder. This improves the performance of the original algorithms
by 70%. This is a joint work with Jean-Sébastien Coron, Johann Großschädl and
Mehdi Tibouchi. A part of this work will appear in the proceedings of FSE, 2015
[CGVT15].
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4.1 A New Recursive Formula Based on Kogge-Stone
Adder

Our new conversion algorithm is based on the Kogge-Stone adder [KS73], a carry
look-ahead adder that generates the carry signal in O(log k) time, when addition is
performed modulo 2k. In this section we first recall the classical ripple-carry adder,
which generates the carry signal in O(k) time, and we show how Goubin’s recursion
formula (2.1) can be derived from it. The derivation of our new recursion formula
from the Kogge-Stone adder will proceed similarly.

4.1.1 The Ripple-Carry Adder and Goubin’s Recursion Formula

We first recall the classical ripple-carry adder. Given three bits x, y and c, the
carry c′ for x+ y+ c can be computed as c′ = (x∧ y)⊕ (x∧ c)⊕ (y ∧ c). Therefore,
the modular addition of two k-bit variables x and y can be defined recursively as
follows:

(x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i) (4.1)

for 0 ≤ i < k, where{
c(0) = 0
∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1)) (4.2)

where x(i) represents the ith bit of the variable x, with x(0) being the least significant
bit.

In the following, we show how recursion (4.2) can be computed directly with
k-bit values instead of bits, which enables us to recover Goubin’s recursion (2.1).
For this, we define the sequences xj , yj and vj whose j + 1 least significant bits are
the same as x, y and c respectively:

xj =
j⊕
i=0

2ix(i), yj =
j⊕
i=0

2iy(i), vj =
j⊕
i=0

2ic(i) (4.3)
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for 0 ≤ j ≤ k − 1. Since c(0) = 0 we can actually start the summation for vj at
i = 1; we get from (4.2):

vj+1 =
j+1⊕
i=1

2ic(i)

vj+1 =
j+1⊕
i=1

2i
(
(x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1))

)

vj+1 = 2
j⊕
i=0

2i
(
(x(i) ∧ y(i))⊕ (x(i) ∧ c(i))⊕ (c(i) ∧ y(i))

)
vj+1 = 2

(
(xj ∧ yj)⊕ (xj ∧ vj)⊕ (yj ∧ vj)

)
which gives the recursive equation:{

v0 = 0
∀j ≥ 0, vj+1 = 2 (vj ∧ (xj ⊕ yj)⊕ (xj ∧ yj))

(4.4)

Therefore we have obtained a recursion similar to (4.2), but with k-bit values instead
of single bits. Note that from the definition of vj in (4.3) the variables vj and vj+1
have the same least significant bits from bit 0 to bit j, which is not immediately
obvious when considering only recursion (4.4). Combining (4.1) and (4.3) we obtain
xj + yj = xj ⊕ yj ⊕ vj for all 0 ≤ j ≤ k − 1. For k-bit values x and y, we have
x = xk−1 and y = yk−1, which gives:

x+ y = x⊕ y ⊕ vk−1

We now define the same recursion as (4.4), but with constant x, y instead of xj ,
yj . That is, we let {

u0 = 0
∀j ≥ 0, uj+1 = 2 (uj ∧ (x⊕ y)⊕ (x ∧ y)) (4.5)

which is exactly the same recursion as Goubin’s recursion (2.1). It is easy to show
inductively that the variables uj and vj have the same least significant bits, from
bit 0 to bit j. Let us assume that this is true for uj and vj . From recursions (4.4)
and (4.5) we have that the least significant bits of vj+1 and uj+1 from bit 0 to bit
j + 1 only depend on the least significant bits from bit 0 to bit j of vj , xj and yj ,
and of uj , x and y respectively. Since these are the same, the induction is proved.

Eventually for k-bit registers we have uk−1 = vk−1, which proves Goubin’s
recursion formula (2.1), namely:

x+ y = x⊕ y ⊕ uk−1

As mentioned previously, this recursion formula requires k − 1 iterations on k-bit
registers. In the following, we describe an improved recursion based on the Kogge-
Stone carry look-ahead adder, requiring only log2 k iterations.
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4.1.2 The Kogge-Stone Carry Look-Ahead Adder

In this section we first recall the general solution from [KS73] for first-order recur-
rence equations; the Kogge-Stone carry look-ahead adder is a direct application.

General first-order recurrence equation.

We consider the following recurrence equation:{
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

(4.6)

We define the function Q(m,n) for m ≥ n:

Q(m,n) =
m∑
j=n

 m∏
i=j+1

ai

 bj (4.7)

We have Q(0, 0) = b0 = z0, Q(1, 0) = a1b0 + b1 = z1, and more generally:

Q(m, 0) =
m−1∑
j=0

 m∏
i=j+1

ai

 bj + bm

= am

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj + bm = amQ(m− 1, 0) + bm

Therefore the sequence Q(m, 0) satisfies the same recurrence as zm, which implies
Q(m, 0) = zm for all m ≥ 0. Moreover we have:

Q(2m− 1, 0) =
2m−1∑
j=0

2m−1∏
i=j+1

ai

 bj
=

2m−1∏
j=m

aj

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj +
2m−1∑
j=m

2m−1∏
i=j+1

ai

 bj
which gives the recursive doubling equation:

Q(2m− 1, 0) =

2m−1∏
j=m

aj

Q(m− 1, 0) +Q(2m− 1,m)

where each term Q(m − 1, 0) and Q(2m − 1,m) contain only m terms ai and bi,
instead of 2m in Q(2m−1, 0). Therefore the two terms can be computed in parallel.
This is also the case for the product

∏2m−1
j=m aj which can be computed with a product

tree. Therefore by recursive splitting with N processors, the sequence element zN
can be computed in time O(log2N), instead of O(N) with a single processor.
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The Kogge-Stone Carry Look-Ahead Adder.

The Kogge-Stone carry look-ahead adder [KS73] is a direct application of the pre-
vious technique. Namely writing ci = c(i), ai = x(i) ⊕ y(i) and bi = x(i) ∧ y(i) for all
i ≥ 0, we obtain from (4.2) the recurrence relation for the carry signal ci:{

c0 = 0
∀i ≥ 1, ci = (ai−1 ∧ ci−1)⊕ bi−1

which is similar to (4.6), where ∧ is the multiplication and ⊕ the addition. We can
therefore compute the carry signal ci for 0 ≤ i < k in time O(log k) instead of O(k).

More precisely, the Kogge-Stone carry look-ahead adder can be defined as fol-
lows. For all 0 ≤ j < k one defines the sequence of bits:

P0,j = x(j) ⊕ y(j), G0,j = x(j) ∧ y(j) (4.8)

and the following recursive equations:{
Pi,j = Pi−1,j ∧ Pi−1,j−2i−1

Gi,j = (Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j
(4.9)

for 2i−1 ≤ j < k, and Pi,j = Pi−1,j and Gi,j = Gi−1,j for 0 ≤ j < 2i−1. The
following lemma shows that the carry signal cj can be computed from the sequence
Gi,j .

Lemma 4.1. We have (x+y)(j) = x(j)⊕y(j)⊕ cj for all 0 ≤ j < k where the carry
signal cj is computed as c0 = 0, c1 = G0,0 and cj+1 = Gi,j for 2i−1 ≤ j < 2i.

Proof. To compute the carry signal up to ck−1, one must therefore compute the
sequences Pi,j and Gi,j up to i = dlog2(k − 1)e. For completeness we provide the
proof of Lemma 4.1 in below.

We consider again recursion (4.6):{
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

The recursion for ci is similar when we denote the AND operation by a multiplica-
tion, and the XOR operation by an addition:{

c0 = 0
∀i ≥ 1, ci = ai−1ci−1 + bi−1

Therefore we obtain ci+1 = zi for all i ≥ 0. From the Q(m,n) function given in
(4.7) we define the sequences:

Gi,j := Q
(
j,max(j − 2i + 1, 0)

)
Pi,j :=

j∏
v=max(j−2i+1,0)

av
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We show that these sequences satisfy the same recurrence (4.9). From (4.7) we have
the recurrence for j ≥ 2i−1:

Gi,j =
j∑

u=max(j−2i+1,0)

 j∏
v=u+1

av

 bu
=

j−2i−1∑
u=max(j−2i+1,0)

 j∏
v=u+1

av

 bu +
j∑

u=j−2i−1+1

 j∏
v=u+1

av

 bu
=

 j∏
v=j−2i−1+1

av

 j−2i−1∑
u=max(j−2i+1,0)

j−2i−1∏
v=u+1

av

 bu +Q(j, j − 2i−1 + 1)

= Pi−1,j ·Q
(
j − 2i−1,max(j − 2i + 1, 0)

)
+Gi−1,j

= Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

We obtain a similar recurrence for Pi,j when j ≥ 2i−1:

Pi,j =
j∏

v=max(j−2i+1,0)
av

=

 j−2i−1∏
v=max(j−2i+1,0)

av

 ·
 j∏
v=j−2i−1+1

av

 = Pi−1,j−2i−1 · Pi−1,j

In summary we obtain for j ≥ 2i−1 the relations:{
Gi,j = Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

Pi,j = Pi−1,j · Pi−1,j−2i−1

which are exactly the same as (4.9). Moreover for 0 ≤ j < 2i−1, we have Gi,j =
Q(j, 0) = Gi−1,j and Pi,j = Pi−1,j . Finally we have the same initial conditions
G0,j = Q(j, j) = bj = x(j) ∧ y(j) and P0,j = aj = x(j) ⊕ y(j). This proves that the
sequence Gi,j defined by (4.9) is such that:

Gi,j = Q
(
j,max(j − 2i + 1, 0)

)
This implies that we have G0,0 = Q(0, 0) = z0 and Gi,j = Q(j, 0) = zj for all
2i−1 ≤ j < 2i. Moreover as noted initially we have cj+1 = zj for all j ≥ 0.
Therefore the recurrence indeed computes the carry signal cj , with c0 = 0, c1 = G0,0
and cj+1 = Gi,j for 2i−1 ≤ j < 2i. This terminates the proof of Lemma 4.1.

4.1.3 Our New Recursive Algorithm

We now derive a recursion formula with k-bit variables instead of single bits; we
proceed as in Section 4.1.1, using the more efficient Kogge-Stone carry look-ahead al-
gorithm, instead of the classical ripple-carry adder for Goubin’s recursion. We prove
the following theorem, analogous to Theorem 2.3, but with complexity O(log k) in-
stead of O(k). Given a variable x, we denote by x � ` the variable x left-shifted
by ` bits, keeping only k bits in total.
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Theorem 4.1. Let x, y ∈ {0, 1}k and n = dlog2(k − 1)e. Define the sequence of
k-bit variables Pi and Gi, with P0 = x⊕ y and G0 = x ∧ y, and{

Pi = Pi−1 ∧ (Pi−1 � 2i−1)
Gi =

(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

(4.10)

for 1 ≤ i ≤ n. Then x+ y = x⊕ y ⊕ (2Gn).

Proof. We start from the sequences Pi,j and Gi,j defined in Section 4.1.2 corre-
sponding to the Kogge-Stone carry look-ahead adder, and we proceed as in Section
4.1.1. We define the variables:

Pi :=
k−1∑

j=2i−1
2jPi,j Gi :=

k−1∑
j=0

2jGi,j

which from (4.8) gives the initial condition P0 = x ⊕ y and G0 = x ∧ y, and using
(4.9):

Pi =
k−1∑

j=2i−1
2jPi,j =

k−1∑
j=2i−1

2j(Pi−1,j ∧ Pi−1,j−2i−1)

=

 k−1∑
j=2i−1

2jPi−1,j

 ∧
 k−1∑
j=2i−1

2jPi−1,j−2i−1


We can start the summation of the Pi,j bits with j = 2i−1 − 1 instead of 2i − 1,
because the other summation still starts with j = 2i − 1, hence the corresponding
bits are ANDed with 0. This gives:

Pi =

 k−1∑
j=2i−1−1

2jPi−1,j

 ∧
 k−1∑
j=2i−1

2jPi−1,j−2i−1


= Pi−1 ∧

k−1−2i−1∑
j=2i−1−1

2j+2i−1
Pi−1,j

 = Pi−1 ∧ (Pi−1 � 2i−1)

Hence we get the same recursion formula for Pi as in (4.10). Similarly we have
using (4.9):

Gi =
k−1∑
j=0

2jGi,j =
k−1∑

j=2i−1

2j
(
(Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j

)
+

2i−1−1∑
j=0

2jGi−1,j

=

 k−1∑
j=2i−1

2j
(
Pi−1,j ∧Gi−1,j−2i−1

)⊕Gi−1

=
(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

Therefore we obtain the same recurrence for Pi and Gi as (4.10). Since from Lemma
4.1 we have that cj+1 = Gi,j for all 2i−1 ≤ j < 2i, andGi,j = Gi−1,j for 0 ≤ j < 2i−1,
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we obtain cj+1 = Gi,j for all 0 ≤ j < 2i. Taking i = n = dlog2(k − 1)e, we obtain
cj+1 = Gn,j for all 0 ≤ j ≤ k − 2 < k − 1 ≤ 2n. This implies:

k−1∑
j=0

2jcj =
k−1∑
j=1

2jcj = 2
k−2∑
j=0

2jcj+1 = 2
k−2∑
j=0

2jGn,j = 2Gn

Since from Lemma 4.1 we have (x + y)(j) = x(j) ⊕ y(j) ⊕ cj for all 0 ≤ j < k, this
implies x+ y = x⊕ y ⊕ (2Gn) as required.

The complexity of the previous recursion is only O(log k), as opposed to O(k)
with Goubin’s recursion. The sequence can be computed using the algorithm be-
low; note that we do not compute the last element Pn since it is not used in the
computation of Gn. Note also that the algorithm below could be used as a O(log k)
implementation of arithmetic addition z = x+ y mod 2k for processors having only
Boolean operations.

Algorithm 21 Kogge-Stone Adder
Input: x, y ∈ {0, 1}k, and n = max(dlog2(k − 1)e, 1).
Output: z = x+ y mod 2k
1: P ← x⊕ y
2: G← x ∧ y
3: for i := 1 to n− 1 do
4: G← (P ∧ (G� 2i−1))⊕G
5: P ← P ∧ (P � 2i−1)
6: end for
7: G← (P ∧ (G� 2n−1))⊕G
8: return x⊕ y ⊕ (2G)

4.2 Our New Conversion Algorithm

Our new conversion algorithm from arithmetic to Boolean masking is a direct ap-
plication of the Kogge-Stone adder in Algorithm 21. We are given as input two
arithmetic shares A, r of x = A + r mod 2k, and we must compute x′ such that
x = x′ ⊕ r, without leaking information about x.

Since Algorithm 21 only contains Boolean operations, it is easy to protect
against first-order attacks. Assume that we give as input the two arithmetic shares
A and r to Algorithm 21; the algorithm first computes P = A⊕ r and G = A ∧ r,
and after n iterations outputs x = A + r = A ⊕ r ⊕ (2G). Obviously one cannot
compute P = A ⊕ r and G = A ∧ r directly since that would reveal information
about the sensitive variable x = A + r. Instead we protect all intermediate vari-
ables with a random mask s using standard techniques, that is we only work with
P ′ = P ⊕ s and G′ = G⊕ s. Eventually we obtain a masked x′ = x⊕ s as required,
in time O(log k) instead of O(k).
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4.2.1 Secure Computation of AND

Since Algorithm 21 contains AND operations, we first show how to secure the AND
operation against first-order attacks. The technique is essentially the same as in
[ISW03]. With x = x′ ⊕ s and y = y′ ⊕ t for two independent random masks s and
t, we have for any u:

(x ∧ y)⊕ u =
(
(x′ ⊕ s) ∧ (y′ ⊕ t)

)
⊕ u = (x′ ∧ y′)⊕ (x′ ∧ t)⊕ (s ∧ y′)⊕ (s ∧ t)⊕ u

Algorithm 22 SecAnd
Input: x′, y′, s, t, u such that x′ = x⊕ s and y′ = y ⊕ t.
Output: z′ such that z′ = (x ∧ y)⊕ u.
1: z′ ← u⊕ (x′ ∧ y′)
2: z′ ← z′ ⊕ (x′ ∧ t)
3: z′ ← z′ ⊕ (s ∧ y′)
4: z′ ← z′ ⊕ (s ∧ t)
5: return z′

We see that the SecAnd algorithm requires 8 Boolean operations. The following
Lemma shows that the SecAnd algorithm is secure against first-order attacks.

Lemma 4.2. When s, t and u are uniformly and independently distributed in F2k ,
all intermediate variables in the SecAnd algorithm have a distribution independent
from x and y.

Proof. Since s and t are uniformly and independently distributed in F2k , the vari-
ables x′ = x ⊕ s and y′ = y ⊕ t are also uniformly and independently distributed
in F2k . Therefore the distribution of x′ ∧ y′ is independent from x and y. The
same holds for the variables x′ ∧ t, s ∧ y′ and s ∧ t. Moreover since u is uniformly
distributed in F2k , the distribution of z′ from Line 1 to Line 4 is uniform in F2k ;
hence its distribution is also independent from x and y.

4.2.2 Secure Computation of XOR

Similarly we show how to secure the XOR computation of Algorithm 21. With
x = x′ ⊕ s and y = y′ ⊕ u where s and u are two independent masks, we have:

(x⊕ y)⊕ s = x′ ⊕ s⊕ y′ ⊕ u⊕ s = x′ ⊕ y′ ⊕ u

Algorithm 23 SecXor
Input: x′, y′, u, such that x′ = x⊕ s and y′ = y ⊕ u.
Output: z′ such that z′ = (x⊕ y)⊕ s.
1: z′ ← x′ ⊕ y′
2: z′ ← z′ ⊕ u
3: return z′
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We see that the SecXor algorithm requires 2 Boolean operations. The following
Lemma shows that the SecXor algorithm is secure against first-order attacks. It
is easy to see that all the intermediate variables in the algorithm are uniformly
distributed in F2k , and hence the proof is straightforward.

Lemma 4.3. When s and u are uniformly and independently distributed in F2k ,
all intermediate variables in the SecXor algorithm have a distribution independent
from x and y.

4.2.3 Secure Computation of Shift

Finally we show how to secure the Shift operation in Algorithm 21 against first-order
attacks. With x = x′ ⊕ s, we have for any t:

(x� j)⊕ t =
(
(x′ ⊕ s)� j

)
⊕ t = (x′ � j)⊕ (s� j)⊕ t

This gives the following algorithm.

Algorithm 24 SecShift
Input: x′, s, t and j such that x′ = x⊕ s and j > 0.
Output: y′ such that y′ = (x� j)⊕ t.
1: y′ ← t⊕ (x′ � j)
2: y′ ← y′ ⊕ (s� j)
3: return y′

We see that the SecShift algorithm requires 4 Boolean operations. The following
Lemma shows that the SecShift algorithm is secure against first-order attacks. The
proof is straightforward so we omit it.

Lemma 4.4. When s and t are uniformly and independently distributed in F2k ,
all intermediate variables in the SecShift algorithm have a distribution independent
from x.

4.2.4 Our New Conversion Algorithm

Finally we can convert Algorithm 21 into a first-order secure algorithm by protecting
all intermediate variables with a random mask; see Algorithm 25 below.

Since the SecAnd subroutine requires 8 operations, the SecXor subroutine re-
quires 2 operations, and the SecShift subroutine requires 4 operations, lines 7 to 11
require 2 ·8 + 2 ·4 + 2 + 2 = 28 operations, hence 28 · (n−1) operations for the main
loop. The total number of operations is then 7+28 ·(n−1)+4+8+2+4 = 28 ·n−3.
In summary, for a register size k = 2n the number of operations is 28 · log2 k − 3,
in addition to the generation of 3 random numbers. Note that the same random
numbers s, t and u can actually be used for all executions of the conversion algo-
rithm in a given execution. The following Lemma proves the security of our new
conversion algorithm against first-order attacks.
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Lemma 4.5. When r is uniformly distributed in F2k , any intermediate variable in
Algorithm 25 has a distribution independent from x = A+ r mod 2k.

Proof. The proof is based on the previous lemma for SecAnd, SecXor and SecShift,
and also the fact that all intermediate variables from Line 2 to 5 and in lines 12,
13, 18, and 19 have a distribution independent from x. Namely (A⊕ t)∧ r and t∧ r
have a distribution independent from x, and the other intermediate variables have
the uniform distribution.

Algorithm 25 Kogge-Stone Arithmetic to Boolean Conversion
Input: A, r ∈ {0, 1}k and n = max(dlog2(k − 1)e, 1)
Output: x′ such that x′ ⊕ r = A+ r mod 2k.
1: Let s← {0, 1}k, t← {0, 1}k, u← {0, 1}k.
2: P ′ ← A⊕ s
3: P ′ ← P ′ ⊕ r . P ′ = (A⊕ r)⊕ s = P ⊕ s
4: G′ ← s⊕

(
(A⊕ t) ∧ r

)
5: G′ ← G′ ⊕ (t ∧ r) . G′ = (A ∧ r)⊕ s = G⊕ s
6: for i := 1 to n− 1 do
7: H ← SecShift(G′, s, t, 2i−1) . H = (G� 2i−1)⊕ t
8: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ u

9: G′ ← SecXor(G′, U, s, u) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

10: H ← SecShift(P ′, s, t, 2i−1) . H = (P � 2i−1)⊕ t
11: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ u

12: P ′ ← P ′ ⊕ s
13: P ′ ← P ′ ⊕ u . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

14: end for
15: H ← SecShift(G′, s, t, 2n−1) . H = (G� 2n−1)⊕ t
16: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ u

17: G′ ← SecXor(G′, U, s, u) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

18: x′ ← A⊕ 2G′ . x′ = (A+ r)⊕ r ⊕ 2s
19: x′ ← x′ ⊕ 2s . x′ = (A+ r)⊕ r
20: return x′

4.3 Addition Without Conversion

Beak and Noh proposed a method to mask the ripple carry adder in [BN05]. Sim-
ilarly, Karroumi et al. [KRJ04] used Goubin’s recursion formula (2.1) to compute
an arithmetic addition z = x + y mod 2k directly with masked shares x′ = x ⊕ s
and y′ = y⊕ r, that is without first converting x and y from Boolean to arithmetic
masking, then performing the addition with arithmetic masks, and then converting
back from arithmetic to Boolean masks. They showed that this can lead to better
performances in practice for the block cipher XTEA.

In this section we describe an analogous algorithm for performing addition di-
rectly on the masked shares, based on the Kogge-Stone adder instead of Goubin’s
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formula, to get O(log k) complexity instead of O(k). More precisely, we receive as
input the shares x′, y′ such that x′ = x ⊕ s and y′ = y ⊕ r, and the goal is to
compute z′ such that z′ = (x + y) ⊕ r. For this it suffices to perform the addition
z = x+ y mod 2k as in Algorithm 21, but with the masked variables x′ = x⊕ s and
y′ = y⊕r instead of x, y, while protecting all intermediate variables with a Boolean
mask; this is straightforward since Algorithm 21 contains only Boolean operations;
see Algorithm 26 below.

Algorithm 26 Kogge-Stone Masked Addition
Input: x′, y′, r, s ∈ {0, 1}k and n = max(dlog2(k − 1)e, 1).
Output: z′ such that z′ = (x+ y)⊕ r, where x = x′ ⊕ s and y = y′ ⊕ r
1: Let t← {0, 1}k, u← {0, 1}k.
2: P ′ ← SecXor(x′, y′, s, r) . P ′ = (x⊕ y)⊕ s = P ⊕ s
3: G′ ← SecAnd(x′, y′, s, r, u) . G′ = (x ∧ y)⊕ u = G⊕ u
4: G′ ← G′ ⊕ s
5: G′ ← G′ ⊕ u . G′ = (x ∧ y)⊕ s = G⊕ s
6: for i := 1 to n− 1 do
7: H ← SecShift(G′, s, t, 2i−1) . H = (G� 2i−1)⊕ t
8: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ u

9: G′ ← SecXor(G′, U, s, u) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

10: H ← SecShift(P ′, s, t, 2i−1) . H = (P � 2i−1)⊕ t
11: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ u

12: P ′ ← P ′ ⊕ s
13: P ′ ← P ′ ⊕ u . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

14: end for
15: H ← SecShift(G′, s, t, 2n−1) . H = (G� 2n−1)⊕ t
16: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ u

17: G′ ← SecXor(G′, U, s, u) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

18: z′ ← SecXor(y′, x′, r, s) . z′ = (x⊕ y)⊕ r
19: z′ ← z′ ⊕ (2G′) . z′ = (x+ y)⊕ 2s⊕ r
20: z′ ← z′ ⊕ 2s . z′ = (x+ y)⊕ r
21: return z′

As previously the main loop requires 28 · (n− 1) operations. The total number
of operations is then 12+28 ·(n−1)+20 = 28 ·n+4. In summary, for a register size
k = 2n the number of operations is 28 · log2 k + 4, with additionally the generation
of 2 random numbers; as previously those 2 random numbers along with r and s
can be reused for subsequent additions within the same execution. The following
Lemma proves the security of Algorithm 26 against first-order attacks. The proof
is similar to the proof of Lemma 4.5 and is therefore omitted.

Lemma 4.6. For a uniformly and independently distributed randoms r ∈ {0, 1}k
and s ∈ {0, 1}k, any intermediate variable in the Kogge-Stone Masked Addition has
the uniform distribution.
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4.4 Extension to Higher-order Masking
The first conversion algorithms between Boolean and arithmetic masking secure
against t-th order attack (instead of first-order only) were presented in [CGV14]
(Chapter 3). We first described an algorithm for secure addition modulo 2k directly
with n Boolean shares (where n ≥ 2t+1), with complexity O(n2 ·k). The algorithm
was then used as a subroutine to obtain conversion algorithms in both directions,
again with complexity O(n2 · k). The algorithms were proven secure in the ISW
framework for private circuits [ISW03].

Our improved solution can naturally be extended to secure the addition against
attacks of order t, where we use d = 2t+ 1 shares (instead of two used for the first-
order). The algorithms given in Chapter 3 uses Goubin’s formula and hence require
time in O(d2k). We can use the similar techniques as in first-order masking and
improve the solution to O(d2 log k). Namely, we modify Algorithm 21, where all
the operations are performed on d shares. The corresponding algorithm is given in
Algorithm 27. Here HOSecAnd is a function which securely computes the Boolean
AND on given shares. More precisely, it is the higher-order version of the function
SecAnd (same as Algorithm 13). Note that the security of Algorithm 27 directly
follows from the ISW scheme [ISW03] similar to the algorithms in [CGV14].

Algorithm 27 HO-secure Kogge-Stone Masked Addition
Input: (xi) and (yi) for 1 ≤ i ≤ d

Output: (zi) for 1 ≤ i ≤ d, with
d⊕
i=1

zi =
d⊕
i=1

xi +
d⊕
i=1

yi

1: (Pi)1≤i≤d ← (xi)1≤i≤d ⊕ (yi)1≤i≤d . P = x⊕ y
2: (Gi)1≤i≤d ← HOSecAnd((xi)1≤i≤n, (yi)1≤i≤d) . G = x ∧ y
3: for i := 1 to n− 1 do
4: (G′i)1≤i≤d ← HOSecAnd((Pi)1≤i≤n, (Gi)1≤i≤d � 2i−1)
5: (Gi)1≤i≤d ← (G′i)1≤i≤d ⊕ (Gi)1≤i≤d
6: (Pi)1≤i≤d ← HOSecAnd((Pi)1≤i≤n, (Pi)1≤i≤d � 2i−1)
7: end for
8: (G′i)1≤i≤d ← HOSecAnd((Pi)1≤i≤n, (Gi)1≤i≤d � 2n−1)
9: (Gi)1≤i≤d ← (G′i)1≤i≤d ⊕ (Gi)1≤i≤d

10: (zi)1≤i≤d ← (xi)1≤i≤d ⊕ (yi)1≤i≤d ⊕ 2(Gi)1≤i≤d
11: return (zi)1≤i≤d

4.5 Analysis and Implementation

4.5.1 Comparison With Existing Algorithms

We compare in Table 4.1 the complexity of our new algorithms with Goubin’s al-
gorithms and Debraize’s algorithms for various addition bit sizes k.1 We give the
number of random numbers required for each of the algorithms as well as the count

1For Debraize’s algorithm the operation count does not involve the precomputation module. In
case of k = 8 and l = 8 the result can be obtained just by accessing the lookup table.
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Figure 4.1: Comparison of elementary operations required for Goubin’s algorithms,
Debraize’s algorithm and our new algorithms for various values of k.

of required elementary operations. Goubin’s original conversion algorithm from
arithmetic to Boolean masking required 5k+5 operations and a single random gen-
eration. This was recently improved by Karroumi et al. down to 5k+ 1 operations
[KRJ04]. The authors also provided an algorithm to compute first-order secure
addition on Boolean shares using Goubin’s recursion formula, requiring 5k + 8 op-
erations and a single random generation (Refer to Section 2.5.2). On the other hand
we require 19(k/`)− 2 operations for Debraize’s algorithm with the lookup table of
size 2l and generation of two randoms.

Algorithm rand k = 8 k = 16 k = 32 k = 64 k
Goubin’s A→B conversion 1 41 81 161 321 5k + 1

New A→B conversion 3 81 109 137 165 28 log2 k − 3
Goubin’s addition [KRJ04] 1 48 88 168 328 5k + 8

New addition 2 88 116 144 172 28 log2 k + 4
Debraize’s A→B conversion 2 36 74 150 302 19(k/4)− 2

(` = 4)
Debraize’s A→B conversion 2 - 36 74 150 19(k/8)− 2

(` = 8)

Table 4.1: Number of randoms (rand) and elementary operations required for
Goubin’s algorithms, Debraize’s algorithm and our new algorithms for various val-
ues of k.

From Figure 4.1 and Figure 4.2 we see that our algorithms outperform Goubin’s
algorithms for k ≥ 32 and performs better or comparable to Debraize’s algorithm
depending on `. Moreover, in most of the RISC based microcontrollers (ex: AVR,
ARM) shifts are for free, and hence SecShift actually costs only 2 instructions
instead of 4 instructions. For example, Line 1 in SecShift will be compiled to:

eor Rz,Rz,Rs� j
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Figure 4.2: Comparison of elementary operations required for Goubin’s addition
and our addition for various values of k.

where Rz, Rs are the registers containing t and x′, and j is the shift value
(a compile-time constant if we use loop-unrolling). This instruction executes in a
single clock cycle with or without the shift. If we consider this, our algorithms
perform even better in practice as we show in the next section. In practice, most
cryptographic constructions performing arithmetic operations use addition modulo
232; for example HMAC-SHA-1 [NIS95] and XTEA [NW97]. There also exists
cryptographic constructions with additions modulo 264, for example Threefish used
in the hash function Skein, a SHA-3 finalist, and the SPECK block-cipher (see
Section 4.7).

4.5.2 Practical Implementation

We have implemented our new algorithms along with Goubin’s algorithms; we have
also implemented the table-based arithmetic to Boolean conversion algorithm de-
scribed by Debraize in [Deb12]. For Debraize’s algorithm, we considered two possi-
bilities for the partition of the data, with word length ` = 4 and ` = 8. Our imple-
mentations were done on a 32-bit AVR microcontroller AT32UC3A0512, based on
RISC microprocessor architecture. It can run at frequencies up to 66 MHZ and has
SRAM of size 64 KB along with a flash of 512 KB. We used the C programming
language and the machine code was produced using the AVR-GCC compiler with
further optimization (e.g. loop unrolling). For generation of random numbers we
used a pseudorandom number generator based on linear feedback shift registers. 2

The results are summarized in Table 4.2. From Figure 4.3 and Figure 4.4 we
see that our new algorithms perform better than Goubin’s algorithms from k = 32

2Note that the reported results have strong dependency on the used RNG and hence can change
if a different RNG is used.
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Figure 4.3: Number of clock cycles required for Goubin’s conversion algorithm,
Debraize’s conversion algorithm, our new conversion algorithm for various values of
k.

onward. When k = 32, our algorithms perform roughly 14% better than Goubin’s
algorithms. Moreover, our conversion algorithm performs 7% better than Debraize’s
algorithm (` = 4). For k = 64, we can see even better improvement i.e., 23% faster
than Goubin’s algorithm and 22% better than Debraize’s algorithm (` = 4). On
the other hand, Debraize’s algorithm performs better than our algorithms for ` = 8
; however as opposed to Debraize’s algorithm our conversion algorithm requires
neither preprocessing nor extra memory.

k = 8 k = 16 k = 32 k = 64 Prep. Mem.
Goubin’s A→B conversion 180 312 543 1672 - -
Debraize’s A→B conversion (` = 4) 149 285 505 1573 1221 32
Debraize’s A→B conversion (` = 8) - 193 316 846 18024 1024
New A→B conversion 301 386 467 1284 - -
Goubin’s addition [KRJ04] 235 350 582 1789 - -
New addition 344 429 513 1340 - -

Table 4.2: Number of clock cycles on a 32-bit processor required for Goubin’s con-
version algorithm, Debraize’s conversion algorithm, our new conversion algorithm,
Goubin’s addition from [KRJ04], and our new addition, for various arithmetic sizes
k. The last two columns denote the precomputation time and the table size (in
bytes) required for Debraize’s algorithm.

We give the results of our higher-order secure addition (Algorithm 27) in Ta-
ble 4.3. We compare our implementation with that of Coron-Großschädl-Vadnala
[CGV14] for security order t = 2, 3. From Figure 4.5 we see that our algorithms
significantly improve the execution time (up to 70%).
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Figure 4.4: Number of clock cycles required for Goubin’s addition from [KRJ04],
and our new addition, for various values of k.
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Figure 4.5: Comparison of running time requirements for CGV [CGV14] algorithm
and our new algorithm for t = 2, 3.
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Algorithm t = 2 t = 3
Time Rand Time Rand

CGV [CGV14] 26 320 46 672
Our algorithms 8 100 14 210

Table 4.3: Time (in thousands of cycles) and number of randoms (Rand) required
for CGV [CGV14] algorithm and our new algorithm for t = 2, 3.

4.6 Application to HMAC-SHA-1

In this section, we apply our countermeasure to obtain a first-order secure imple-
mentation of HMAC-SHA-1. SHA-1 is a cryptograhic hash function designed by
NSA that is still widely used in numerous commercial applications. As SHA-1 in-
volves both modular addition and XOR operations, we must either convert between
Boolean and arithmetic masking, or perform the arithmetic additions directly on
the Boolean shares as suggested in [KRJ04].

4.6.1 HMAC-SHA-1

SHA-1 processes the input in blocks of 512-bits and produces a message digest
of 160 bits. If the length of the message is not a multiple of 512, the message
is appended with zeros, followed by a “1". The last 64 bits of the message con-
tains the length of the original message in bits. All operations are performed on
32-bit words, producing an output of five words. The initial values of the five
hash words are: H0 = 0x67452301, H1 = 0xEFCDAB89, H2 = 0x98BADCFE, H3 =
0x10325476, H4 = 0xC3D2E1F0. Each 512-bit message block M [0], · · · ,M [15] is
expanded to 80 words as follows:

W [i] =
{
M [i] if i ≤ 15
(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16])� 1 Otherwise

One initially lets A = H0, B = H1, C = H2, D = H3 and E = H4, where the Hi’s
are initial constants. The main loop is defined as follows, for i = 0 to i = 79.

Temp = (A� 5) + f(i, B,C,D) + E +W [i] + k[i]
E = D; D = C; C = B � 30; B = A; A = Temp

where the function f is defined as:

f(i, B,C,D) =


(B ∧ C) ∨ ((¬B) ∧D) if 0 ≤ i ≤ 19
(B ⊕ C ⊕D) if 20 ≤ i ≤ 39
(B ∧ C) ∨ (B ∧D) ∨ (C ∧D) if 40 ≤ i ≤ 59
(B ⊕ C ⊕D) if 60 ≤ i ≤ 79
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and the constant k is defined as:

k[i] =


0x5A827999 if 0 ≤ i ≤ 19
0x6ED9EBA1 if 20 ≤ i ≤ 39
0x8F1BBCDC if 40 ≤ i ≤ 59
0xCA62C1D6 if 60 ≤ i ≤ 79

After the main loop one lets:

H0 ← H0+A, H1 ← H1+B, H2 ← H2+C, H3 ← H3+C, H4 ← H4+D (4.11)

and one processes the next block. All additions are performed modulo 232. Even-
tually the final hash result is the 160-bit string H0‖H1‖H2‖H3‖H4.

HMAC-SHA-1 of a message M is computed as:

H
(
K ⊕ opad ‖ H(K ⊕ ipad,M)

)
whereH is the SHA-1 function,K is the secret key, and ipad and opad are constants.

4.6.2 First-order Secure HMAC-SHA-1

In this section we show how to protect HMAC-SHA-1 against first-order attacks,
using either Goubin’s Boolean to arithmetic conversion (Section 2.5.1) and our new
arithmetic to Boolean conversion (Algorithm 25), or the addition with Boolean
masks (Algorithm 26).

In this section, we apply the algorithms proposed in Section 4.3 and Section 4.2
to obtain a first-order secure HMAC-SHA-1. We present a method to securely
compute H(K ⊕ ipad,M), which can be used for the final output as well i.e.,
H((K ⊕ opad)||H(K ⊕ ipad,M)).

Randomizing the inputs

The key K is masked with a 64 byte random number r1. The two shares cor-
responding to the key are: K0 = r1 ⊕ K,K1 = r2. Similarly the message M
is masked with a random number r2 with the corresponding shares being M0 =
M ⊕ r2,M1 = r2. After applying XOR with ipad, the input to the hash function
becomes: (r1 ⊕K ⊕ ipad, r1)||(r2,M ⊕ r2). Initial shares of the digest are:

H00 = 0x67452301, H01 = 0,

H10 = 0xEFCDAB89, H11 = 0,

H20 = 0x98BADCFE, H21 = 0,

H30 = 0x10325476, H31 = 0,

H40 = 0xC3D2E1F0, H41 = 0.

These values will be updated after the processing of every block. Finally, the shares
of the 80 words W [0], · · · ,W [80]: Wj [0], · · · ,Wj [80] for j = 0, 1 are computed as
follows:

Wj [i] =
{
Mj [i] if i ≤ 15
(Wj [i− 3]⊕Wj [i− 8]⊕Wj [i− 14]⊕Wj [i− 16])� 1 Otherwise
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Securing function f

The shares of A,B,C,D,E are set to the shares of H0, H1, H2, H3, H4 correspond-
ingly. The function f computes three different values depending on the index i.
For 20 ≤ i ≤ 39 and 60 ≤ i ≤ 79, f(i, B,C,D) = (B ⊕ C ⊕D). This can be easily
secured by applying XOR on individual shares, i.e.:

f(i, B0, C0, D0, , B1, C1, D1) = (B0 ⊕ C0 ⊕D0, B1 ⊕ C1 ⊕D1)

For 0 ≤ i ≤ 19, f(i, B,C,D) = (B ∧ C) ∨ ((¬B) ∧D). We know that

¬(a⊕ b) = (¬a)⊕ b = a⊕ (¬b)

Hence (¬B) can be easily obtained as: (¬B0) ⊕ B1. We can compute (B ∧ C)
and ((¬B) ∧D) securely using the SecAnd function. To compute a ∨ b we use the
following relation:

a ∨ b = ¬((¬a) ∧ (¬b)) (4.12)

For 40 ≤ i ≤ 59, f(i, B,C,D) = (B∧C)∨(B∧D)∨(C∧D). This can be computed
securely using the SecAnd function and Equation 4.12.

Securing the main loop

The main loop consists of the following operation:

Temp = (A� 5) + f(i, B,C,D) + E +W [t] + k[t]

If we use the masked addition method proposed in Section 4.3, we need to perform
four additions on the Boolean shares to evaluate the above expression. Since the
SHA-1 loop consists of 80 iterations, we need 4 · 80 = 320 calls to the masked
addition (Algorithm 26) for the main loop. Additionally, the update of the Hi’s
(4.11) needs five calls. Hence, we need a total of 325 calls per each message block .
Alternatively, we can use conversion methods to obtain the same result as follows:

1. Convert the Boolean shares to corresponding arithmetic shares using Goubin’s
algorithm.

2. Perform addition directly on the Boolean shares.

3. Convert the resulting arithmetic shares to Boolean shares using Algorithm
25.

With this approach we need 5 Boolean to arithmetic conversions and 1 arithmetic
to Boolean conversion for each iteration. Hence with the additional update of the
Hi’s we need a total of 5 · 80 + 5 = 405 Boolean to arithmetic conversions and
80 + 5 = 85 arithmetic to Boolean conversions.
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Figure 4.6: Comparison of penalty factor for HMAC-SHA-1 on a 32-bit processor

4.6.3 Practical Implementation

We have implemented HMAC-SHA-1 using the technique above on the same mi-
crocontroller as in Section 4.5.2. To convert from arithmetic to Boolean masking,
we used one of the following: Goubin’s algorithm, Debraize’s algorithm or our new
algorithm. The results for computing HMAC-SHA-1 of a single message block are
summarized in Table 4.4. For Debraize’s algorithm, the timings also include the
precomputaion time required for creating the tables. From Figure 4.6 we see that
our algorithms give better performances than Goubin and Debraize (` = 4), but
Debraize with ` = 8 is still slightly better; however as opposed to Debraize, our
algorithms do not require extra memory. For the masked addition (instead of con-
versions), the new algorithm performs 7% better than Goubin’s algorithm.

Time Penalty Factor Memory
HMAC-SHA-1 unmasked 128 1 -
HMAC-SHA-1 with Goubin’s conversion 423 3.3 -
HMAC-SHA-1 with Debraize’s conversion (` = 4) 418 3.26 32
HMAC-SHA-1 with Debraize’s conversion (` = 8) 402 3.1 1024
HMAC-SHA-1 with new conversion 410 3.2 -
HMAC-SHA-1 with Goubin’s addition [KRJ04] 1022 8 -
HMAC-SHA-1 with new addition 933 7.2 -

Table 4.4: Running time in thousands of clock-cycles and penalty factor for HMAC-
SHA-1 on a 32-bit processor. The last column denotes the table size (in bytes)
required for Debraize’s algorithm.

4.7 Application to SPECK
SPECK is a family of lightweight block ciphers proposed by NSA, which provides
high throughput for application in software [BSS+13]. The SPECK family includes
various ciphers based on ARX (Addition, Rotation, XOR) design with different
block and key sizes. To verify the performance results of our algorithms for k =
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64, we used SPECK 128/128, where block and key sizes both equal to 128 and
additions are performed modulo 264. The 128-bit key is expanded to 32 64-bit round
keys (equal to the number of rounds) using Key Expansion procedure. Each round
operates on 128-bit data and consists of following operations: Addition modulo 264,
Rotate 8 bits right, Rotate 3 bits left and XOR. More precisely, given x[2i], x[2i+1]
as input (with each of them 64-bit long), the round i does the following:

x[2i+ 2] = (RotateRight(x[2i], 8) + x[2i+ 1])⊕ key[i]
x[2i+ 3] = (RotateLeft(x[2i+ 1], 3))⊕ x[2i+ 2]

Similar to HMAC-SHA-1, we applied all the algorithms to protect SPECK
128/128 against first-order attacks. If we use conversion algorithms, we need to
perform two Boolean to arithmetic conversions and one arithmetic to Boolean con-
version per round; hence 64 Boolean to arithmetic conversions and 32 arithmetic
to Boolean conversions overall. On the other hand, when we perform addition di-
rectly on the Boolean shares, we need 32 additions in total. We summarize the
performance of all the algorithms in Table 4.5.

Time Penalty Factor Memory
SPECK unmasked 2047 1 -
SPECK with Goubin’s conversion 63550 31 -
SPECK with Debraize’s conversion (` = 4) 61603 30 32
SPECK with Debraize’s conversion (` = 8) 37718 18 1024
SPECK with new conversion 51134 24 -
SPECK with Goubin’s addition [KRJ04] 62942 30 -
SPECK with new addition 48574 23 -

Table 4.5: Running time in clock-cycles and penalty factor for SPECK on a 32-bit
processor. The last column denotes the table size (in bytes) required for Debraize’s
algorithm.

As we can see from Figure 4.7 our algorithms outperform Goubin and Debraize’s
algorithm (` = 4) similar to HMAC-SHA-1. The results are also better than De-
braize’s algorithm for (` = 8), which was not the case for HMAC-SHA-1. Hence,
we can conclude that our proposed algorithms provide better performance than all
other algorithms for k = 64, despite not using any extra memory for the tables.
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Chapter 5

Faster Mask Conversion with
Lookup Tables

The algorithms given in Chapter 3 and Chapter 4 require d = 2t+1 shares to protect
against attacks of order t. In this chapter, we improve the algorithms for second-
order conversion using lookup tables so that only three shares instead of five are
needed, which is the minimal number for second-order security. We first introduce
two algorithms to convert from Boolean to arithmetic masking based on the second-
order provably secure S-box output computation method proposed by Rivain et al
at FSE 2008 (recalled in Chapter 2). The same can be used to obtain second-order
secure arithmetic to Boolean masking. Though these algorithms are secure (as we
show), they become infeasible for implementation on low-resource devices like smart
cards for n > 10 (the additions are performed modulo 2n), as we require lookup
table of size 2n. We then show how we can overcome this challenge using divide
and conquer approach. Furthermore, we also propose a first-order secure addition
algorithm again using lookup tables. This new algorithm gives similar performance
compared to the solution of Karroumi-Richard-Joye. We prove the security of
all proposed algorithms on the basis of well established assumptions and models.
Finally, we provide experimental evidence of our improved mask conversion applied
to HMAC-SHA-1. Our results show that the proposed second-order algorithms
improve the execution time by 85% compared to the methods given in Chapter
3 and do so with negligible memory overhead. This is a joint work with Johann
Großschädl. A part of this work appeared in the proceedings of SPACE, 2013
[CGVT15] and COSADE, 2015 [VG15].
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5.1 Second-order Boolean to Arithmetic Masking

This section addresses the problem of securely converting second-order Boolean
shares to the corresponding arithmetic shares without any second-order or first-
order leakage. To start with, we are given three Boolean shares x1, x2, x3 such that
x = x1⊕x2⊕x3 where x is a sensitive variable. The goal is to find three arithmetic
shares A1, A2, A3 satisfying x = A1 + A2 + A3 without leaking any information
exploitable in a first or second-order DPA attack. We propose two algorithms to
achieve this goal; one is based on Algorithm 1 and the second on Algorithm 2. Both
of our algorithms use the secure S-box output computation of Rivain et al [RDP08],
which simplifies the security proofs.

The first of our variants is given in Algorithm 28; we devised this conversion
by modifying Algorithm 1 appropriately. The algorithm generates two shares A2,
A3 randomly from [ 0, 2n − 1] and computes the third share via the relation A1 =
(x − A2) − A3. The aim of Algorithm 1 was to output S(x) ⊕ y1 ⊕ y2 as result.
Hence, it computed (S(x1 ⊕ a) ⊕ y1) ⊕ y2 for every possible value of the variable
a from 0 to 2n − 1, and then obtained the correct value for the case a = x2 ⊕ x3.
But here, our aim is to compute (x − A2) − A3, which requires us to modify the
table entries to ((x1 ⊕ a)−A2)−A3 so that we can obtain the correct value when
a = x2 ⊕ x3. Note that the subtractions are modulo 2n.

Correctness: When a′ = r, a becomes r ⊕ r′ = x2 ⊕ x3. Thus, T [a′] = T [r] =
((((x1 ⊕ x2) ⊕ x3) − A2) − A3) = (x − A2) − A3, from which follows that A1 =
(x−A2)−A3 and finally x = A1 +A2 +A3.

Algorithm 28 Sec20B→A: First Variant
Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
Output: Arithmetic shares: A1 = (x−A2)−A3, A2, A3
1: Randomly generate n-bit numbers r, A2, A3
2: r′ ← (r ⊕ x2)⊕ x3
3: for a = 0 to 2n − 1 do
4: a′ ← a⊕ r′
5: T [a′]← ((x1 ⊕ a)−A2)−A3
6: end for
7: A1 = T [r]
8: return A1, A2, A3
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We devised Algorithm 29 by appropriately adapting Algorithm 2. Again, we
first compute the value of ((x1 ⊕ a) − A2) − A3 for all possible values of a and
store the result in Rb or Rb̄, depending on the return value of compareb. When
a = x2 ⊕ x3, the value of x2 ⊕ a and x3 become equal, hence compareb returns
b. Consequently, the correct value of A1 = (x − A2) − A3 is stored in Rb. In all
other cases (i.e. a 6= x2 ⊕ x3), the value ((x1 ⊕ a)−A2)−A3 is stored in Rb̄.

Algorithm 29 Sec20B→A: Second Variant
Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
Output: Arithmetic shares: A1 = (x−A2)−A3, A2, A3
1: Randomly generate n-bit numbers A2, A3
2: Randomly generate one bit b
3: for a = 0 to 2n − 1 do
4: cmp← compareb(x2 ⊕ a, x3)
5: Rcmp ← ((x1 ⊕ a)−A2)−A3
6: end for
7: A1 = Rb
8: return A1, A2, A3

5.2 Second-order Arithmetic to Boolean Masking
In this section, we briefly introduce two algorithms to securely convert second-order
arithmetic shares into the “corresponding” Boolean shares, whereby the conversion
does not introduce any second-order (or first-order) leakage. More precisely, given
three arithmetic shares A1, A2, A3 of a sensitive variable x such that x = A1 +
A2 +A3, both of these algorithms compute the Boolean shares x1, x2, x3 satisfying
x = x1 ⊕ x2 ⊕ x3 without second or first-order leakage.

Algorithm 30 employs a lookup table similar to Algorithm 28. Here, the value
of r′ is (A2 − r) + A3, where r is a random value in the range [ 0, 2n − 1]. The
table entries corresponding to a′ = a − r′ are now ((A1 + a) ⊕ x2) ⊕ x3 instead
of ((x1 ⊕ a) − A2) − A3. Similar to Algorithm 28, the two shares x2 and x3 are
generated randomly from [ 0, 2n − 1], while the third share x1 is T [r].

Algorithm 30 Sec20A→B: First Variant
Input: Arithmetic shares: A1 = (x−A2)−A3, A2, A3
Output: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
1: Randomly generate n-bit numbers r, x2, x3
2: r′ ← (A2 − r) +A3
3: for a = 0 to 2n − 1 do
4: a′ ← a− r′
5: T [a′]← ((A1 + a)⊕ x2)⊕ x3
6: end for
7: x1 = T [r]
8: return x1, x2, x3
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Correctness: When a′ = r, a becomes r + r′ = A2 + A3. Thus, T [a′] = T [r] =
((((A1+A2)+A3)⊕x2)⊕x3) = (x⊕x2)⊕x3, from which follows that x1 = (x⊕x2)⊕x3
and finally x = x1 ⊕ x2 ⊕ x3.

Algorithm 31 shows the other method to convert arithmetic shares of second
order to “equivalent” Boolean shares. Among the three Boolean shares, x2 and
x3 are generated randomly within the range [ 0, 2n−1]. One of the two registers
R0, R1 serves to store the correct value of x1 and the other is used for storing
the incorrect value. The compare instruction compares (a − A2) with A3; when
they are equal, compareb returns b and, thus, the result is stored in Rb. In this case,
the result is the correct value of x1, which means ((A1 +A2 +A3)⊕x2)⊕x3 = (x⊕
x2)⊕ x3. Otherwise, the result is incorrect and stored in R′b.

Algorithm 31 Sec20A→B: Second Variant
Input: Arithmetic shares: A1 = (x−A2)−A3, A2, A3
Output: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
1: Randomly generate n-bit numbers x2, x3
2: Randomly generate one bit b
3: for a = 0 to 2n − 1 do
4: cmp← compareb(a−A2, A3)
5: Rcmp ← ((A1 + a)⊕ x2)⊕ x3
6: end for
7: x1 = Rb
8: return x1, x2, x3

5.3 Security Analysis
We first review the security model introduced in [RDP08]. Then, based on the same
model, we present the security proofs of all our four algorithms against second-order
attacks. We assume that the device leaks in the Hamming weight model in which
the leakage is proportional to the Hamming weight of the processed data. Below we
summarize some basic definitions and results that are used in the proofs for quick
reference (taken from [RDP08]).

• Sensitive variable: An intermediate variable obtained by applying a certain
function on a known value (e.g. plaintext) and the secret key.

• Primitive random variable: An intermediate variable generated by a uniform
random number generator.

• Functional dependence: If an intermediate variable is obtained by applying
a discrete function on some other variable X, then it is said to be function-
ally dependent on X. Otherwise, it is functionally independent.

• Statistical dependence: If the statistical distribution of an intermediate vari-
able varies according to some other variableX, then it is said to be statistically
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dependent on X. Otherwise, it is said to be statistically independent.

• Functional independence implies statistical independence but not vice-versa.

• In second order SCA, leakages from a maximum of two intermediate vari-
ables is allowed to be exploited simultaneously. Hence, for a cryptographic
algorithm to be called second order secure, it is imperative that every pair of
intermediate variables is statistically independent of any sensitive variable.

• A set of intermediate variables is statistically independent of a variable X, if
and only if all the intermediate variables belonging to the set are statistically
independent of X.

• For two sets A and B, A × B is statistically independent of a variable X, if
and only if all the pairs in A×B are statistically independent of X.

Lemma 5.1. For two statistically independent random variables X and Y , it
holds that for every measurable function f, f(X) is statistically independent
of Y .

Lemma 5.2. For two statistically independent random variables X and Y ,
where Y is uniformly distributed, and for a variable Z statistically independent
of Y and functionally independent of X, it holds that the pair (Z,X ⊕ Y ) is
statistically independent of X.

Limitations of the Security Proofs:

The algorithms in [RDP08], though proven secure against “standard” DPA attacks,
suffer from two problems. Firstly, the algorithm not using table computations,
i.e. Algorithm 2, is only secure in the Hamming weight model. At COSADE 2012,
Coron et al have shown that the algorithm is not secure when the device leaks in the
Hamming distance model [CGP+12b]. They also demonstrated that a straightfor-
ward conversion of a proof from the Hamming weight model to Hamming distance
model by initializing the bus (resp. register) with 0 before every write operation has
a second-order flaw. As a consequence, the proof of Algorithm 2 given in [RDP08]
not valid anymore in the Hamming distance model. The conversion of a security
proof from one leakage model to another is still an open issue. Since Algorithm 29
and Algorithm 31 are similar to Algorithm 2, they suffer from said limitation too.
However, a solution to the conversion problem for Rivain et al’s generic countermea-
sure for secure S-box computation would, of course, also apply to our algorithms.

Secondly, recent developments in side-channel cryptanalysis have shown that so-
called horizontal side channel attacks can still defeat the masking [PHL09, TWO13].
By attacking the masked table generation of the algorithms, the attacker can still
recover the secret key when the SNR (Signal to noise ratio) is low. But these attacks
are generic in the sense that they can be applied to almost all the masking schemes
that are used currently. So, our algorithms are no exception to this. The problem of
securely generating the masked table is still an open challenge and needs immediate
attention. The solution to this problem can be readily applied to our algorithms as
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well making them secure against these attacks too. Hence, despite these limitations
the algorithms proposed here are still relevant to the cryptology community.

Theorem 5.1. Algorithm 28 is secure against second order DPA.

Proof. We follow the same notation as in [RDP08] for the sake of simplicity. Each
intermediate variable of the algorithm can be seen as a result of applying the func-
tion Ij on the loop index a. Assume that Iindex = Iindex(a) for 0 ≤ a ≤ 2n − 1 and
I =

⋃num
index=0 Iindex, where num is the total number of intermediate variables. We

list all the intermediate variables used in Algorithm 28 in Table 5.1.

Table 5.1: Intermediate variables used
in Algorithm 28
index Iindex

1 x2
2 x3
3 A2
4 A3
5 r
6 r ⊕ x2
7 r ⊕ x2 ⊕ x3
8 a
9 a⊕ r ⊕ x2 ⊕ x3
10 x⊕ x2 ⊕ x3
11 x⊕ x2 ⊕ x3 ⊕ a
12 (x⊕ x2 ⊕ x3 ⊕ a)−A2
13 ((x⊕ x2 ⊕ x3 ⊕ a)−A2)−A3
14 (x−A2)−A3

Table 5.2: Intermediate variables used
in Algorithm 29
index Iindex

1 x2
2 x3
3 A2
4 A3
5 b
6 a
7 x2 ⊕ a
8 δ0(x2 ⊕ a⊕ x3)⊕ b
9 x⊕ x2 ⊕ x3
10 x⊕ x2 ⊕ x3 ⊕ a
11 (x⊕ x2 ⊕ x3 ⊕ a)−A2
12 ((x⊕ x2 ⊕ x3 ⊕ a)−A2)−A3
13 (x−A2)−A3

We recall that for an algorithm to be secure against second order DPA, no pair
of intermediate variables should be statistically dependent on a sensitive variable.
So, we need to prove that I × I is statistically independent of x. For simplicity, we
divide the set of intermediate variables into three subsets: E1 = I1 ∪ I2 ∪ ... ∪ I9,
E2 = I10 ∪ I11 ∪ ... ∪ I13, E3 = I14. The objective now is to prove that all the
combinations of these sets are statistically independent of x.

1. E1×E1: All the intermediate variables in E1 are functionally independent of
x. Hence, E1 × E1 is statistically independent of x.

2. E2 ×E2: It can be seen that I10 = x⊕ x2 ⊕ x3 is statistically independent of
x. As all the elements in E2 × E2 are functions of I10, by applying Lemma
5.2, we can infer that E2 × E2 is statistically independent of x.

3. E3 × E3: It is also straightforward to see that E3 × E3 is statistically inde-
pendent of x as x− (A2 −A3) is statistically independent of x.

4. E1×E2: E1 is statistically independent of x2⊕x3 and functionally independent
of x. According to Lemma 5.2, E1×{x⊕x2⊕x3} is statistically independent
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of x. Therefore, according to Lemma 5.1, E1×E2 is statistically independent
of x.

5. E1 × E3: As E1 is statistically independent of A2 − A3, E1 × {x − (A2 −
A3)}(i.e. E1×E3) is also statistically independent of x. As the pair (x⊕x2⊕
x3, (x − A2) − A3) is statistically independent of x, (I10 ∪ I11 ∪ I12) × E3 is
statistically independent of x, because all these can be expressed as a function
of (x⊕ x2 ⊕ x3, (x−A2)−A3).

6. E2 × E3: Finally, we need to prove that I13 × E3 is statistically independent
of x to establish that E2 ×E3 is statistically independent of x. Suppose that
v1 = (x−A2)−A3 and v2 = (x⊕x2⊕x3⊕a). It is easy to see that v1 and v2
are statistically independent of each other as well as x. We can write I13×E3
as {v1 + v2 − x} × v1, which is statistically independent of x.

From all this it can be concluded that Theorem 5.1 holds.

Theorem 5.2. Algorithm 29 is secure against second order DPA.

Proof. Assume that the Boolean function δ0(x) = 0 only when x = 0. So, the
compareb(x, y) can be represented as δ0(x⊕ y)⊕ b. For Algorithm 29 to be secure,
it is important that the function compareb is implemented in a way which prevents
any first-order leakage on compare(x, y). One such method is recalled in Algorithm
3 and we can construct the proof based on this result. All the intermediate variables
that are used in Algorithm 29 are shown in Table 5.2. It can be seen that the
intermediate variables are almost identical to those in Algorithm 28. Hence, we
can prove the security using the same arguments as given in the proof of Theorem
5.1.

Table 5.3: Intermediate variables used
in Algorithm 30

index Iindex

1 x2
2 x3
3 A2
4 A3
5 r
6 A2 − r
7 A2 − r +A3
8 a
9 a−A2 + r −A3
10 x−A2 −A3
11 x−A2 −A3 + a
12 (x−A2 −A3 + a)⊕ x2
13 (x−A2 −A3 + a)⊕ x2 ⊕ x3
14 x⊕ x2 ⊕ x3

Table 5.4: Intermediate variables used
in Algorithm 31

index Iindex

1 x2
2 x3
3 A2
4 A3
5 b
6 a
7 a−A2
8 δ0((a−A2)⊕A3)⊕ b
9 x−A2 −A3
10 x−A2 −A3 + a
11 (x−A2 −A3 + a)⊕ x2
12 (x−A2 −A3 + a)⊕ x2 ⊕ x3
13 x⊕ x2 ⊕ x3
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Theorem 5.3. Algorithm 30 is secure against second order DPA.

Proof. We list all the intermediate variables that are used in Algorithm 30 in Table
5.3. We can use similar arguments as in Theorem 5.1 to prove that no pair of the
intermediate variables is statistically dependent on x.

Theorem 5.4. Algorithm 31 is secure against second order DPA.

Proof. We list all the intermediate variables that are used in Algorithm 31 in Table
5.4. Again, the proof of security can be constructed similar to that of Theorem 5.1,
by proving that no pair of the intermediate variables is statistically dependent on
x.

5.4 Implementation Results

We implemented all the algorithms from Section 5.1 and Section 5.2 in both Matlab
and ANSI C. We considered the simplest case of converting between 8-bit masks.
The Matlab implementation served as reference for the C implementation so that
we could easily verify the correctness of the latter. We tested each algorithm in-
dividually using 100,000 pseudo-random inputs and found that all the algorithms
produce the correct result for all the test cases. In our C implementation, the ran-
dom numbers are generated with the help of the rand() function of the standard C
library1. Though this is sufficient for testing purposes, a real-world implementation
would require pseudo-random numbers of better quality. Furthermore, it should be
noted that we developed all our implementation mainly for the purpose of having
a proof of concept rather than achieving high performance. The implementation
can be further optimized, which means the results we present in this section should
be seen as upper bounds of the execution time. Furthermore, if the conversions
are used in a real-world application, one has to ensure that the compilation pro-
cess respects the flow of intermediate variables assumed in our security analysis.
If this is not the case then it may be necessary to develop an assembly language
implementation.

The implementations of Algorithm 28 and Algorithm 30 are straightforward. We
create a table of 256 bytes and for each possible value of a (0 ≤ a ≤ 255 ) store the
corresponding entry in one byte. The indexing of the table is done through a′ and
the correct value of the third share is retrieved by accessing the entry corresponding
to r. For efficient implementations of Algorithm 29 and Algorithm 31, we need to
implement the compareb function as efficiently as possible. We used the following
technique to implement the function. We first create an array of 32 bytes and
initialize all the bits to b̄. We treat the array as a collection of 256 bits, each
initialized to b̄. Then, for a random value r3, we set the corresponding bit position
in the array to b. Now, each call to function compareb is replaced by a single look-
up into the array. For example, compareb(x, y) is obtained by retrieving the value

1On an 8-bit AVR processor, e.g. ATmega128, each call of the rand() function takes roughly
1500 cycles when using the avr-libc library of the WinAVR tool suite.
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at the bit position (x ⊕ r3) ⊕ y. The index of the byte that contains the bit can
be found by a logical right-shift operation. The bit itself can be extracted from the
byte via a shift operation too.

Table 5.5: Implementation results on 8, 16 and 32-bit platforms
Algorithm Cycles RAM (bytes)

8-bit architecture
Algorithm 28 5769 256
Algorithm 29 6742 32
Algorithm 30 5769 256
Algorithm 31 6742 32

16-bit architecture
Algorithm 28 4983 256
Algorithm 29 16706 32
Algorithm 30 4983 256
Algorithm 31 16706 32

32-bit architecture
Algorithm 28 793 256
Algorithm 29 1087 32
Algorithm 30 793 256
Algorithm 31 1087 32

In order to evaluate the execution time of the algorithms, we compiled them for
the 32-bit ARM platform as well as 8-bit AVR platforms and performed simulations
with AVR Studio. We also evaluated the algorithms on a low-power 16-bit micro-
controller, namely the TI MSP430, with the help of a cycle-accurate instruction-
set simulator. Table 5.5 shows the results of our implementation on these three
platforms. In Table 5.5, the second column specifies the amount of time required to
convert an 8-bit mask from one form to other in number of clock cycles. The third
column gives the memory requirements of the algorithms in number of bytes. As we
can see, the algorithms using table look-ups, i.e. Algorithm 28 and Algorithm 30, are
faster than the ones which do not use tables. This is because of the additional time
required to evaluate the compareb function in case of Algorithm 29 and Algorithm
31. At the same time, the algorithms using the table computation method require
eight times more memory than their counterparts.

Note here that the execution times for Algorithm 29 and Algorithm 31 on the
16-bit platform are somewhat misleading. From Table 5.5, it can be seen that the
execution time on the MSP430 is almost 2.5 times slower than that on the 8-bit
AVR. This is due to the fact that the used MSP430 processor does not have a
barrel shifter, which means a shift operation by n bit positions takes n clock cycles.
On the other hand, the AVR features a fast barrel shifter able to execute all shift
operations in a single cycle, independent of the shift distance.
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5.5 Efficient Second-order Secure Boolean to Arithmetic
Masking

Though the algorithms given in Section 5.1 require only 3 shares, they become
infeasible for implementation on low-resource devices like smart cards for n > 10
(the additions are performed modulo 2n), as we require lookup table of size 2n. In
this section we propose new secure conversion algorithms, which overcome the above
limitation and can be easily applied to cryptographic constructions with arbitrary
n, e.g. HMAC-SHA-1 with n = 32.

5.5.1 Improved Conversion Algorithm

The problem here is, we are given three Boolean shares x1, x2, x3 so that the sensitive
variable x is obtained by x = x1⊕x2⊕x3. The goal is to find three arithmetic shares
A1, A2, A3 satisfying x = A1 + A2 + A3 without leaking any first or second-order
information about x. This can be achieved by generating two shares A2 and A3
randomly and computing the third share as: A1 = x− A2 − A3 as done in [VG13]
using the approach followed by Rivain et al. in [RDP08]. But as mentioned earlier,
their scheme becomes infeasible to be used in practice when n > 10, as it requires a
lookup table of size 2n. To obtain a solution for n > 10, we use divide and conquer
approach. That is, we divide each share into p words of l bits each, and compute
(Ai1)(0≤i≤p−1) independently, where A1 = Ap−1

1 || · · · ||A0
1. In this case, we also need

to handle the carries from word i to word i+ 1. These carries in turn also need to
be protected by masking, which can leak information about the sensitive variable
otherwise. In the following, we present our method to protect the sensitive variables
along with carries and demonstrate its security with a formal proof.

We differentiate between two sets of carries: input carries i.e., carries used
in computing Ai1 and output carries i.e., carries raised while computing Ai1. As
computing Ai1 involves two subtractions, there will be two output carries from each
word i, which become input carries for the word i + 1. For the first word, input
carries are initialized to 0, i.e., c0

1 = 0, c0
2 = 0. We compute Ai1 from the input xi

and carries ci1, ci2 as follows:

Ai1 = (xi −l ci1 −l Ai2 −l ci2 −l Ai3)

Here the operation a −l b represents (a − b) mod 2l. Similarly, the output carries
ci+1

1 , ci+1
2 are computed as follows:

ci+1
1 = Carry(xi, ci1)⊕ Carry(xi −l ci1, Ai2) (5.1)
ci+1

2 = Carry(xi −l ci1 −l Ai2, ci2)⊕ Carry(xi −l ci1 −l Ai2 −l ci2, Ai3) (5.2)

where Carry(a, b) represents the carry from the operation (a − b). Note that each
of the carry computation involves two subtractions: one with the input carry and
the other with one of the random shares i.e., Ai2 or Ai3. In the simplest case,
a subtraction a − b produces a carry if a < b. However, in our case, we have
operations of the form (a −l c) −l b where both a and b are l-bit integers and c is
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either 0 or 1. In the case of c = 0, the above operation generates a carry if a < b.
But when c = 1, we have to consider another case, namely a < c, which can only
happen if a = 0 and c = 1. In this special case, the difference a−l c becomes 2l− 1,
thereby producing a carry that needs to be handled as well. However, there won’t
be a carry from the second subtraction as b ≤ 2l−1. Namely, the carries from these
two cases are mutually exclusive; hence the output carry is set to one when either
of them produces a carry as shown in (5.1) and (5.2). For simplicity, we define
functions F1 : {0, 1}l+1 → {0, 1}l+1, F2 : {0, 1}2l → {0, 1}l+1 as follows:

F1(a, b) = a−l b||(Carry(a, b)) (5.3)
F2(a, b) = a−l b||(Carry(a, b)) (5.4)

For the word i, we can compute Ai1 as well as the output carries ci+1
1 , ci+1

2 using
F1 and F2 as follows:

(Bi
1||di1) = F1(xi, ci1)

(Bi
2||di2) = F2(Bi

1, A
i
2)

(Bi
3||di3) = F1(Bi

2, c
i
2)

(Bi
4||di4) = F2(Bi

3, A
i
3)

where Ai1 = Bi
4 and ci+1

1 = di1 ⊕ di2, ci+1
2 = di3 ⊕ di4. According to [RDP08], the

S-box must be balanced for their scheme to be secure 2. In our case, the function
F1 plays the same role and is balanced. Hence, the security guarantee is preserved.
We first present non-randomized version of our solution below for simplicity.

Algorithm 32 Insecure 20B→A
Input: Sensitive variable: x = x1 ⊕ x2 ⊕ x3
Output: Arithmetic shares: x = A1 +A2 +A3
1: c0

1, c
0
2 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: Ai

2, A
i
3 ← Rand(l) . Generate output masks randomly

4: (Bi
1, d

i
1)← F1(xi, ci

1)
5: (Bi

2, d
i
2)← F2(Bi

1, A
i
2)

6: (Bi
3, d

i
3)← F1(Bi

2, c
i
2)

7: (Bi
4, d

i
4)← F2(Bi

3, A
i
3)

8: (Ai
1, c

i+1
1 , ci+1

2 )← (Bi
4, d

i
1 ⊕ di

2, d
i
3 ⊕ di

4)
9: end for

10: return A1, A2, A3

The challenge now is to obtain the same result without leaking any first or
second-order information about the sensitive variable x as well as the carries ci1, ci2
for 0 ≤ i ≤ p−1. We present our solution in two parts: we fist give the algorithm to

2An S-box S : {0, 1}n → {0, 1}m is said to be balanced if every element in {0, 1}m is image of
exactly 2n−m elements in {0, 1}n under S.
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compute the result for one word i.e. Ai1 securely; then we use this as a subroutine to
compute A1. Our solution given in Algorithm 33 uses the similar technique used by
Rivain et al in [RDP08] (Recalled in Algorithm 28) in combination with Algorithm
32. Algorithm 33 takes as input: three Boolean shares, six input carry shares (three
each for the two carries), two output arithmetic shares and four output carry shares.
It returns the third arithmetic share and the remaining two output carry shares.
Similar to Algorithm 28, we create a lookup table T for all the possible values in
[0, 2l+2 − 1]. Here l bits are used for storing Ai1 and two bits for the two carries
correspondingly. As we can see, the rest of the algorithm is similar to the original
algorithm except for handling two extra bits for the carry. 3

Algorithm 33 Sec20B→A_Word
Input: Three input shares: (xi

1 = xi ⊕ xi
2 ⊕ xi

3, x
i
2, x

i
3) ∈ F2l , Six input carry shares:

gi
1 = ci

1⊕gi
2⊕gi

3, g
i
2, g

i
3, g

i
4 = ci

2⊕gi
5⊕gi

6, g
i
5, g

i
6 ∈ F2, Output arithmetic shares: Ai

2, A
i
3,

Output carry shares: hi
1, h

i
2, h

i
3, h

i
4

Output: Masked Arithmetic share: (xi −l A
i
2)−l A

i
3 and masked output carries

1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′1 ← (r1 ⊕ xi

2)⊕ xi
3; r′2 ← (r2 ⊕ gi

2)⊕ gi
3; r′3 ← (r3 ⊕ gi

5)⊕ gi
6;

3: for a1 := 0 to 2l − 1, a2 := 0 to 1, a3 := 0 to 1 do
4: a′1 ← a1 ⊕ r′1; a′2 ← a2 ⊕ r′2; a′3 ← a3 ⊕ r′3
5: (Bi

1, d
i
1)← F1((xi

1 ⊕ a1), (gi
1 ⊕ a2))

6: (Bi
2, d

i
2)← F2(Bi

1, A
i
2)

7: (Bi
3, d

i
3)← F1(Bi

2, (gi
4 ⊕ a3))

8: (Bi
4, d

i
4)← F2(Bi

3, A
i
3)

9: ei
1 ← ((di

1 ⊕ hi
1)⊕ di

2)⊕ hi
2

10: ei
2 ← ((di

3 ⊕ hi
3)⊕ di

4)⊕ hi
4

11: (T1[a′1||a′2||a′3], T2[a′1||a′2||a′3], T3[a′1||a′2||a′3])← (Bi
4, e

i
1, e

i
2)

12: end for
13: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

Finally, we give our second-order secure method to obtain three arithmetic
shares corresponding to the three Boolean shares in Algorithm 34. For the first
word (i.e. i = 0), there are no input carries. Hence, the three shares for both the
carries are set to zero (Step 1). Here, g0

1 = g0
2 = g0

3 = c0
1 = 0 and g0

4 = g0
5 = g0

6 =
c0

2 = 0. To protect the output carries, we use four uniformly generated random bits:
hi1, h

i
2, h

i
3, h

i
4; two each for the two carries. The third share for the carries as well

as Ai1 are computed recursively using the function Sec20B→A_Word (Algorithm
33) 4. Note here that for word i, gi1 ⊕ gi2 ⊕ gi3 = ci1 and gi4 ⊕ gi5 ⊕ gi6 = ci2. The
time complexity of the overall solution is O(2l+2 · p) and the memory required is
(2l+2 · (l + 2)) bits.

3We use different tables for storing the value and the carries so that the security proof can be
easily obtained as in [RDP08].

4Every call to the function Sec20B→A_Word creates a new table and used for that particular
word only. Hence unlike the original method in [RDP08], we don’t reuse the table.
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Algorithm 34 EffSec20B→A
Input: Boolean shares: x1 = x⊕ x2 ⊕ x3, x2, x3
Output: Arithmetic shares: A1, A2, A3 so that x = A1 +A2 +A3
1: g0

1 , g
0
2 , g

0
3 , g

0
4 , g

0
5 , g

0
6 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: Ai

2, A
i
3 ← Rand(l) . Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (Ai
1, g

i+1
1 , gi+1

4 )← Sec20B→A_Word ((xi
j)1≤j≤3, (gi

j)1≤j≤6, A
i
2, A

i
3, (hi

j)1≤j≤4)
6: gi+1

2 , gi+1
3 , gi+1

5 , gi+1
6 ← hi

1, h
i
2, h

i
3, h

i
4

7: end for
8: return A1, A2, A3

5.5.2 Security Analysis.

For an algorithm to be secure against second-order attacks, no pair of the interme-
diate variables appearing in the algorithm should jointly leak the sensitive variable.
In [RDP08] the authors prove the security by enumerating all the possible pairs of
intermediate variables and showing that the joint distribution of none of these pairs
is dependent on the distribution of the sensitive variable. We use similar method
to prove the security of Algorithm 33. We then prove the security of Algorithm 34
using induction.

Lemma 5.3. Algorithm 33 is secure against second-order DPA.

Proof. We list all the intermediate variables used in Algorithm 28 and Algorithm 33
in Table 5.6. The intermediate variables computed using similar technique appear
in the same row. The only difference is that we have three intermediate variables
instead of one for each row. 5 Hence, the security of Algorithm 33 can be derived
from the same arguments as in case of Algorithm 28.

Theorem 5.5. Algorithm 34 is secure against second-order DPA.

Proof. To prove the security of Algorithm 34, we apply mathematical induction on
the number of words p. When p = 1, we already know that the algorithm is secure
from Lemma 5.3. Now assume that the algorithm is secure for p = n. Let Ei be the
set that represents the collection of all the intermediate variables corresponding to
the word i. Then, according to the induction hypothesis, {E1, · · ·En}×{E1, · · ·En}
is independent of the sensitive variables x, c1 and c2.

For the algorithm to be secure when p = n + 1, the set {E1, · · ·En, En+1} ×
{E1, · · ·En, En+1} should be independent of the sensitive variables x, c1 and c2.
Without loss of generality, we divide this set into three subsets: {En+1 × En+1},
{E1, · · ·En} × {E1, · · ·En}, {En+1} × {E1, · · ·En}. The security of {En+1 ×En+1}
can be established directly from the base case and the security of {E1, · · ·En} ×
{E1, · · ·En} follows from the induction hypothesis. All the intermediate variables
in En+1 fall into two categories: the variables that are generated randomly and

5The only exception is for the row S(x1 ⊕ a), where we have four variables.
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Intermediate variables in Intermediate variables in
Algorithm 28 Algorithm 33

x2 xi
2, g

i
2, g

i
5

x3 xi
3, g

i
3, g

i
6

y1 Ai
2, h

i
1, h

i
3

y2 Ai
3, h

i
2, h

i
4

r r1, r2, r3
x2 ⊕ r xi

2 ⊕ r1, gi
2 ⊕ r2, gi

5 ⊕ r3
x2 ⊕ r ⊕ x3 xi

2 ⊕ r1 ⊕ xi
3, g

i
2 ⊕ r2 ⊕ gi

3, g
i
5 ⊕ r3 ⊕ gi

5
a a1, a2, a3

a⊕ r ⊕ x2 ⊕ x3 a1 ⊕ r′1, a2 ⊕ r′2, a3 ⊕ r′3
x1 = x⊕ x2 ⊕ x3 xi

1 = xi ⊕ xi
2 ⊕ x

i
3, g

i
1 = ci

1 ⊕ g
i
2 ⊕ g

i
3, g

i
4 = ci

2 ⊕ g
i
3 ⊕ g

i
6

x1 ⊕ a xi
1 ⊕ a, g

i
1 ⊕ a2, gi

4 ⊕ a3
S(x1 ⊕ a) (Bi

1||d
i
1) = F1((xi

1 ⊕ a), gi
1 ⊕ a2)

(Bi
3||d

i
3) = F1((xi

1 ⊕ a)−l g
i
1 ⊕ a2 −l A

i
2, g

i
4 ⊕ a3)

di
2 = Carry((xi

1 ⊕ a)−l (gi
1 ⊕ a2), Ai

2)
di

4 = Carry((xi
1 ⊕ a)−l (gi

1 ⊕ a2)−l A
i
2 −l (gi

4 ⊕ a3), Ai
3)

S(x1 ⊕ a)⊕ y1 Bi
2 = (xi

1 ⊕ a)−l (gi
1 ⊕ a2)−l A

i
2,

di
1 ⊕ h

i
1 ⊕ d

i
2, d

i
3 ⊕ h

i
3 ⊕ d

i
4

S(x1 ⊕ a)⊕ y1 ⊕ y2 Bi
4 = (xi

1 ⊕ a)−l (gi
1 ⊕ a2)−l A

i
2 −l (gi

4 ⊕ a3)−l A
i
3,

di
1 ⊕ h

i
1 ⊕ d

i
2 ⊕ h

i
2, d

i
3 ⊕ h

i
3 ⊕ d

i
4 ⊕ h

i
4

S(x)⊕ y1 ⊕ y2 xi −l c
i
1 −l A

i
2 −l c

i
2 −l A

i
3,

ci+1
1 ⊕ hi

1 ⊕ h
i
2, c

i+1
2 ⊕ hi

3 ⊕ h
i
4

Table 5.6: Comparison between Intermediate variables used in Algorithm 28 and
Algorithm 33

are independent of any variables in {E1, · · ·En}; and the variables which are a
function of one or more of the following: (xn+1), (cn+1

1 ) and (cn+1
2 ). Any pair of the

intermediate variables involving the first category are independent of the sensitive
variables by definition and the first-order resistance of {E1, · · ·En}. The carry
shares for the word n + 1: (cn+1

i )1≤i≤2 are computed from the word n. Hence the
security of (cn+1

i )1≤i≤3×{E1, · · ·En} is already established in {En}× {E1, · · ·En}.
It is easy to see that the set (xn+1) × {E1, · · ·En} is independent of any sensitive
variable. Hence, the set {En+1} × {E1, · · ·En} is also independent of any sensitive
variable, which proves the theorem.

5.6 Efficient Second-order Secure Arithmetic to Bool-
ean Masking

In arithmetic to Boolean conversion, the problem is to find three shares x1, x2, x3
satisfying x = x1 ⊕ x2 ⊕ x3, where the sensitive variable x is represented by three
arithmetic shares A1, A2, A3 with x = A1 + A2 + A3. To solve this problem, we
follow the same strategy as in Section 5.5.1. We generate two Boolean shares
x2 and x3 randomly, and compute the third share by using the relation x1 =
((A1 + A2 + A3) ⊕ x2 ⊕ x3), without leaking the value of x to first or second-
order DPA. We use the following approach: we first obtain a method to convert
a single arithmetic share word; then we apply this procedure recursively to all the
words. For each word, we have to deal with two carries corresponding to the two
additions, i.e., the carry from the addition of the shares corresponding to A2, A3
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and its subsequent addition with A1.

Algorithm 35 Sec20A→B_Word
Input: Three input shares: (Ai

1 = (xi − Ai
2) − Ai

3, A
i
2, A

i
3) ∈ F2l , Six input carry shares:

gi
1 = ci

1 ⊕ gi
2 ⊕ gi

3, g
i
2, g

i
3, g

i
4 = ci

2 ⊕ gi
5 ⊕ gi

6, g
i
5, g

i
6 ∈ F2, Output Boolean shares: xi

2, x
i
3,

Output carry shares: hi
1, h

i
2, h

i
3, h

i
4

Output: Third Boolean share: xi
1 = xi ⊕ xi

2 ⊕ xi
3 and masked output carries

1: r1 ← Rand(l); r2 ← Rand(1); r3 ← Rand(1)
2: r′1 ← (Ai

2 − r1) +Ai
3 . Mask two arithmetic shares

3: r′2 ← (r2 ⊕ gi
2)⊕ gi

3; r′3 ← (r3 ⊕ gi
5)⊕ gi

6
4: for a1 := 0 to 2l − 1 do
5: a′1 ← a1 −l r

′
1 . a′1 = r1 =⇒ a1 = r1 +l ((Ai

2 − r1) +Ai
3)

6: for a2 := 0 to 1, a3 := 0 to 1 do
7: a′2 ← a2 ⊕ r′2; a′3 ← a3 ⊕ r′3
8: (Bi

1||di
2)← F3(Ai

1 + (a3 ⊕ gi
4) + ((a2 ⊕ gi

1) +l a1))
9: di

1 ← Carry(a1, r
′
1)⊕ Carry(a1,−(a2 ⊕ gi

1))
10: xi

1 ← (Bi
1 ⊕ xi

2)⊕ xi
3 . Apply Boolean masking to the result

11: ei
1 ← (di

1 ⊕ hi
1)⊕ hi

2 . Apply masking to the carries
12: ei

2 ← (di
2 ⊕ hi

3)⊕ hi
4

13: T1[a′1||a′2||a′3], T2[a′1||a′2||a′3], T3[a′1||a′2||a′3]← (xi
1, e

i
1, e

i
2)

14: end for
15: end for
16: return T1[r1||r2||r3], T2[r1||r2||r3], T3[r1||r2||r3]

Algorithm 35 gives the solution for converting one word of Boolean shares to
corresponding arithmetic shares. We again use the technique from Algorithm 28
as in Algorithm 33. As the input shares here are masked using arithmetic masking
instead of Boolean masking, we have to modify the operations accordingly. Hence,
the computation of r′1 (Step 2) and a′1 (Step 5) are replaced with additive operations.
However, we can still mask the carries using Boolean masking as previously and
hence the corresponding operations do not change (Step 3, Step 7). We create a
table for all possible values in [0, 2l+2−1], where l bits are used for xi1 and the extra
two bits for the carries. From a′1 = a1−l r′1, we have a1 = a′1 +l r

′
1. However, a1−r′1

could generate a carry, which needs to be taken care while computing xi1. Hence,
we add the previous carry (a2 ⊕ gi2) to a1 to get Ai2 +l A

i
3 +l c

i
1 as follows:

a1 +l (a2 ⊕ gi1) = (r1 +l ((Ai2 − r1) +Ai3) +l c
i
1) = Ai2 +l A

i
3 +l c

i
1

when a′1 = r1 and a′2 = r2. The out carry di1 (which becomes ci+1
1 for the next

word) can occur in two scenarios: when a1 < r′1 or when (a1 + (a2⊕ gi1)) ≥ 2l (Step
9). It is easy to see that these two cases are mutually exclusive. Now to compute
xi1, we use function F3 : {0, 1}l+1 → {0, 1}l+1, which is defined as:

F3(a) = a mod 2l||Carry(2l, a)

We then call F3 with (Ai1 + (a3 ⊕ gi4) + ((a2 ⊕ gi1) +l a1)) where a3 represents two
shares of the second carry. In this case, the first part returned by F3 gives xi, and
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the second part corresponds to the second carry which becomes ci+1
2 for the next

word 6. Namely, when a′1 = r1, a′2 = r2 and a′3 = r3 we have:

F3(Ai1 + (a3 ⊕ gi4) + ((a2 ⊕ gi1) +l a1)) = (xi + (a3 ⊕ gi4)) mod 2l||
Carry(2l, (xi + (a3 ⊕ gi4)))

Once we have xi and the carries di1, di2, we can simply apply Boolean masks on them
to obtain xi1 and the masked carries (Steps 10, 11 and 12).

Finally we give the full algorithm to convert from arithmetic to Boolean masking
in Algorithm 36. It is similar to Algorithm 34 except that the Boolean shares and
arithmetic shares are interchanged.

Algorithm 36 EffSec20A→B
Input: Arithmetic shares: A1 = x−A2 −A3, A2, A3
Output: Boolean shares: x1, x2, x3 so that x = x1 ⊕ x2 ⊕ x3
1: g0

1 , g
0
2 , g

0
3 , g

0
4 , g

0
5 , g

0
6 ← 0 . Initially carry is zero

2: for i := 0 to p− 1 do
3: xi

2, x
i
3 ← Rand(l) . Generate output masks randomly

4: hi
1, h

i
2, h

i
3, h

i
4 ← Rand(1)

5: (xi
1, g

i+1
1 , gi+1

4 )← Sec20A→B_Word ((Ai
j)1≤j≤3, (gi

j)1≤j≤6, x
i
2, x

i
3, (hi

j)1≤j≤4)
6: gi+1

2 , gi+1
3 , gi+1

5 , gi+1
6 ← hi

1, h
i
2, h

i
3, h

i
4

7: end for
8: return x1, x2, x3

Theorem 5.6. Algorithm 36 is secure against second-order DPA.

Proof. The proof of Algorithm 36 can be obtained similar to Algorithm 34 and is
omitted.

5.7 First-order Secure Masked Addition with Lookup
Tables

As already established, this paper focuses on the problem of dealing with arithmetic
operations on Boolean masks. Till now, we solved this problem by converting the
Boolean masks to arithmetic masks. The idea is that once we have the arithmetic
masks, we can perform arithmetic operations directly and then convert the result
back to Boolean masks. But there also exist an alternative solution to the original
problem i.e., devising a solution to perform addition directly on the Boolean masks.
This idea was first studied with respect to first-order masking in [BN05] and precised
in [KRJ04]. In this section, we provide an alternative method using lookup tables
based on the conversion method proposed by Debraize [Deb12].

The problem here is: we are given Boolean shares of two n-bit sensitive variables
x : x1, r and y : y1, s. We need to compute z1 so that z1⊕r⊕s = x+y, without any

6Note here that even though xi and the carries are computed in clear, they are hidden among
2l+2 − 1 dummy computations, which is the main basis for Rivain et al’s original algorithm.
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first-order leakage of x and y. We follow the similar divide and conquer approach
used in Section 5.5 and Section 5.6. Namely, we divide n-bit shares into p words of
l-bit each and perform addition on the words independently. Moreover, our method
also masks the carry from word i to word i + 1. The addition of each word is
performed using a lookup table, which can be reused for all the words. 7

Our algorithm to generate the lookup table is given in Algorithm 37. It creates
a table of 22l+1 entries, where each entry requires l + 1 bit memory. Here, 2l bits
are used for two l -bit inputs xi, yi and one bit for the input carry. The output
consists of l-bit zi and one bit carry. We run through all the possible 22l+1 values
and store the masked value of sum and carry in the lookup table. Note here that
the inputs masks are t1, t2 and ρ (carry); the out masks are t1 and ρ (carry).

Algorithm 37 GenTable
Input:
Output: Table T , t1, t2, ρ
1: t1, t2 ← Rand(l); ρ← Rand(1)
2: for A = 0 to 2l − 1 do
3: for B = 0 to 2l − 1 do
4: T [ρ||A||B]← ((A⊕ t1) + (B ⊕ t2))⊕ (ρ||t1)
5: T [ρ⊕ 1||A||B]← ((A⊕ t1) + (B ⊕ t2) + 1)⊕ (ρ||t1)
6: end for
7: end for
8: return T, t1, t2, ρ

The full algorithm to compute addition on Boolean shares is given in Algorithm
38. Initially, the carry is zero which is masked with the carry mask ρ from Algorithm
37. We differentiate between carry and no carry cases as follows: if β = ρ then there
is no carry; otherwise, β = ρ⊕ 1. Before accessing the lookup table, we change the
input masks to t1 and t2 (step 3, 4). After we obtain the masked sum, we change
the mask back to ri ⊕ si from t1 (step 6). Finally the output can be obtained as
z1 = zp−1

1 || · · · ||z0
1 = (x+ y)⊕ r ⊕ s.

Algorithm 38 Sec10A
Input: x1 = x⊕ r, r, y1 = y ⊕ s, s, T, t1, t2, ρ
Output: z1 = (x+ y)⊕ r ⊕ s
1: β ← ρ
2: for i = 0 to p− 1 do
3: xi

1 ← xi
1 ⊕ t1 ⊕ ri

4: yi
1 ← yi

1 ⊕ t2 ⊕ si

5: (β||zi
1)← T [β||xi

1||yi
1]

6: zi
1 ← (zi

1 ⊕ ri ⊕ si)⊕ (t1)
7: end for
8: return z1

Lemma 5.4. Algorithm 38 is secure against first-order DPA.
7In case of second-order masking, we use different tables. But we can reuse the table for first-

order masking.
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Proof. It is easy to see that the distribution of all the intermediate variables in
Algorithm 38 is independent of the sensitive variables x and y. Hence the proof is
straightforward.

5.8 Implementation Results of Improved Algorithms

Algorithm l Time Memory rand
second-order conversion

Algorithm 34 1 12186 8 226
Algorithm 34 2 11030 16 114
Algorithm 34 4 19244 64 58
Algorithm 36 1 10557 8 226
Algorithm 36 2 9059 16 114
Algorithm 36 4 15370 64 58

CGV A→ B [CGV14] - 54060 - 484
CGV B → A [CGV14] - 81005 - 822

first-order addition
KRJ addition [KRJ04] - 371 - 1

Algorithm 38 4 294 512 3

Table 5.7: Implementation results for n = 32 on a 32-bit microcontroller. The
column Time denotes the running time in number of clock cycles, rand gives the
number of calls to the random number generator function, column l and Memory
refers to the word size and memory required in bytes for the table based algorithms.

We implemented all the proposed algorithms on a 32-bit ARM microcontroller.
The results are summarized in Table 5.7. We used three different word sizes
(l = 1, 2, 4) for second-order conversion algorithms and word size l = 4 for first-order
masked addition.8 To compare our results with the existing techniques, we also
implemented CGV method [CGV14] for second-order conversion and KRJ method
[KRJ04] for first-order secure addition. As expected, the improvement in case of
second-order conversion algorithms is significant due to the decrease in the number
of shares from five to three. From Figure 5.1 we can see that the conversion algo-
rithms give best results for l = 2. Our Boolean to arithmetic conversion algorithm
with negligible memory requirements (around 8 to 64 bytes) is roughly 86% faster
than the CGV algorithm. Similarly, our arithmetic to Boolean conversion algorithm
improve the running time by 83%, with equivalent memory requirements 9. On the
other hand, we improve the performance of first-order algorithms by roughly 20%.

To study the implications of our new algorithms on practical implementations,
we applied these techniques to HMAC-SHA-1. The corresponding results are sum-
marized in Table 5.8. From Figure 5.2 we can see that in the best case scenario (i.e.,
l = 2), our new algorithms perform 85% better than the existing algorithms. In case

8We observed that for l < 4 KRJ algorithm perform better than ours.
9Note that this solution also performs better than the improved conversion using the secure

addition from Section 4.4
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·104

New scheme l = 1

New scheme l = 2

New scheme l = 4

CHES’14 scheme

Execution Time

B → A
A → B

Figure 5.1: Comparison of execution times for n = 32 on a 32-bit microcontroller.

Algorithm l Time PF
HMAC-SHA-1 - 104 1

second-order conversion
Algorithm 34, 36 1 9715 95
Algorithm 34, 36 2 8917 85
Algorithm 34, 36 4 15329 147
CGV [CGV14] - 62051 596

first-order addition
KRJ addition [KRJ04] - 328 3.1

Algorithm 38 4 308 2.9

Table 5.8: Running time in thousands of clock cycles and penalty factor compared
to the unmasked HMAC-SHA-1 implementation

of first-order masking, the improvement is around 6% including the precomputation
time required to create the table.
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596CGV scheme

95New scheme l=1

85New scheme l=2

147New scheme l=4

0 100 200 300 400 500 600

Figure 5.2: Comparison of penalty factor for HMAC-SHA-1 on a 32-bit microcon-
troller.



Chapter 6

Improved Higher-order Secure
Masking of AES S-Box

This chapter studies the fast and provably secure higher-order masking of AES S-
box proposed by Kim et al. at CHES 2011 [KHL11]. Their scheme was mainly
an improvement of the higher-order masking scheme for AES proposed by Prouff
and Rivain [RP10] using composite field arithmetic. However, the Prouff-Rivain
scheme was later found to be insecure by Coron et al. [CPRR13]. Based on the
same approach used in [CPRR13], we show that the scheme proposed by Kim et al.
is also insecure. We then repair their scheme using the techniques from [CPRR13].
Our implementation results show that the new scheme gives the best results for
higher-order masking of AES. This is a joint work with Junwei Wang, Johann
Großschädl and Qiuliang Xu. A part of this work appeared in the proceedings of
CT-RSA 2015 [WVGX15].

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Provably Secure Higher-order masking of AES . . . . . . 101
6.1.2 Fast and Provably Secure Higher-order masking of AES . 104

6.2 Higher-order Side-channel Security and Mask Refreshing106
6.3 Improved Higher-order Secure Masking of AES S-Box . 107

6.1 Introduction
In this section, we recall the two existing schemes for secure higher order masking of
AES. We first review the higher-order masking scheme proposed Prouff and Rivain
[RP10]. Then we describe the improved scheme proposed by Kim et al. [KHL11].

6.1.1 Provably Secure Higher-order masking of AES

The first solution to secure AES against higher-order attacks was proposed by Prouff
and Rivain at CHES 2010 [RP10]. Their solution was based on the higher-order
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masking scheme proposed by Ishai, Sahai and Wagner (ISW) to protect any circuit
against t-limited adversary, who can tap any t wires in the circuit at a given time
[ISW03]. The main idea of ISW scheme is to represent the circuit which performs the
cryptographic operations as a combination of Boolean gates AND and NOT (which
is possible since NAND is a universal gate), and protect these gates independently.
Securing NOT gate is easy since NOT (x1 ⊕ · · · ⊕ xd) = NOT (x1) ⊕ · · · ⊕ xd. To
protect AND gate, they proposed an elegant solution where the inputs are elements
in F2. However, Prouff and Rivain later shown that this method can actually be
extended to secure multiplication over any field of characteristic 2: F2n (as a result
also to AES field: F28). We recall their solution in Algorithm 39. They also reduced
the number of shares required for d-th order secure masking scheme to d+ 1 from
2d+ 1 required for ISW method.

Algorithm 39 SecMult
Input: (xi) and (yi) for 0 ≤ i ≤ d

Output: (zi) for 0 ≤ i ≤ d, with
d⊕
i=0

zi = x� y

1: for i = 0 to d do
2: for j = i+ 1 to d do
3: ri,j ← rand(2n) . Generate n-bit random
4: rj,i ← (ri,j ⊕ (xi � yj))⊕ (xj � yi)
5: end for
6: end for
7: for i = 0 to d do
8: zi = xi � yi
9: for j = 1 to d do

10: if i 6= j then
11: zi ← zi ⊕ ri,j
12: end if
13: end for
14: end for
15: return (zi)0≤i≤d

In general, masking a linear function f is easy since for x = x1 ⊕ · · · ⊕ xn we
have:

f(x) = f(x1)⊕ f(x2)⊕ · · · ⊕ f(xn) (6.1)

All the operations in AES are linear except for the S-box and hence can be eas-
ily masked using (6.1). The AES S-box consists of an affine transformation over
F28 and finding the inverse of an element over the finite field F28 . As the affine
transformation can again be masked directly by modifying (6.1) appropriately, the
solution to securely mask AES is simplified to computing the inverse of a filed
element securely. Since the inversion x−1 of an element x in the finite field F28

equals x254 over F28 = F2[x]/(x8 + x4 + x3 + x+ 1), the authors perform the secure
computation of inversion through secure exponentiation, which comprises several
secure field multiplications and squarings. We know that in a field of characteristic
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2, the squaring operation is linear and hence can be directly masked using (6.1).
To securely compute the multiplication, the authors use the algorithm recalled in
Algorithm 39.

From the above analysis it is straightforward to see that the main contributor to
the computation time is the multiplications, which require O(d2) time. Hence, the
optimal solution to compute x254 should require the least number of multiplications.
It is easy to see that we need at least 4 multiplications to compute x254 as shown
below. Here S denotes the squaring operation and M denotes the multiplication.

x
x2
−→
S

x2 x2x−−→
M

x3 (x3)4
−−−→

2S
x12 x12x3

−−−→
M

x15 (x15)16
−−−−→

4S
x240 x240x12

−−−−−→
M

x252 (x252)2
−−−−→

S
x254

According to [RP10] their scheme is only secure when the inputs (xi)1≤i≤d,
(yi)1≤i≤d to Algorithm 39 are d- independent of each other. Since the inputs used
in the above multiplication are not independent, they propose to use RefreshMasks
procedure which re- randomizes one of the inputs. Putting altogether, the higher-
order secure masking of power function x254 can be computed using Algorithm
40.

Algorithm 40 SecExp254

Input: (xi) for 0 ≤ i ≤ d with
d⊕
i=0

xi = x

Output: (yi) for 0 ≤ i ≤ d with
d⊕
i=0

yi = x254

1: for i = 0 to d do
2: zi ← x2

i

3: end for
4: (zi)0≤i≤d ← RefreshMasks ((zi)0≤i≤d)
5: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (xi)0≤i≤d)
6: for i = 0 to d do
7: wi ← y4

i

8: end for
9: (wi)0≤i≤d ← RefreshMasks ((wi)0≤i≤d)

10: (yi)0≤i≤d ← SecMult((yi)0≤i≤d, (wi)0≤i≤d)
11: for i = 0 to d do
12: yi ← y16

i

13: end for
14: (yi)0≤i≤d ← SecMult((yi)0≤i≤d, (wi)0≤i≤d)
15: (yi)0≤i≤d ← SecMult((yi)0≤i≤d, (zi)0≤i≤d)
16: return (yi)0≤i≤d

Algorithm 40 uses RefreshMasks procedure before performing SecMult on de-
pendent inputs.1 The RefreshMasks procedure basically modifies the shares using

1The function SecMult is only secure when the inputs are d-independent of each other. Namely,
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freshly generated randoms. Let (ri)1≤i≤d be the new random numbers. Then a call
to RefreshMasks ((xi)1≤i≤d+1) performs the following operation:

x0 = x0 ⊕
⊕

1≤i≤d
ri

(xi)1≤i≤d = xi ⊕ ri

We recall the full algorithm below (Algorithm 41).

Algorithm 41 RefreshMasks

Input: (xi) for 0 ≤ i ≤ d with
d⊕
i=0

xi = x

Output: (x′i) for 0 ≤ i ≤ d with
d⊕
i=0

x′i = x

1: x′0 ← x0
2: for i = 0 to d do
3: ri ← rand(2n)
4: x′0 ← x′0 ⊕ ri
5: x′i ← xi ⊕ ri
6: end for
7: return (x′i)0≤i≤d

6.1.2 Fast and Provably Secure Higher-order masking of AES

As already noted, the most costly operation in the implementation of the AES
S-box is computing the multiplicative inverse over finite field F28 . In order to
accelerate the evaluation of inversion operation, several composite field methods
were proposed [RDJ+01, SMTM01]. Kim et al., [KHL11] used this idea to fasten
the secure high-order masking of AES S-box proposed by Rivain-Prouff [RP10].

Composite Field.

A typical implementation of AES using composite field method follows the three
step process [SMTM01]:

Step 1. Map all the elements from base filed to composite filed using an
isomorphism function δ.
Step 2. Compute the multiplicative inverse in the composite field.
Step 3. Map the result back to the base field from the composite filed using
inverse isomorphism function δ−1.

every 2d-tuple containing d elements from the input x ((xi)1≤i≤d+1) and d elements from the input
y ((yi)1≤i≤d+1) should be uniformly distributed and independent of x and y.



6.1 Introduction 105

The composite field used in [SMTM01] is constructed using the following irre-
ducible polynomials: 

F(22) x2 + x+ 1
F(22)2 x2 + x+ φ

F((22)2)2 x2 + x+ γ.

(6.2)

where φ = {10}2 and γ = {1100}2.
For any element A = ahγ + al in composite field F((22)2)2 , where ah, al ∈ F(22)2 ,

the multiplicative inverse of A can be computed as A−1 = (A17)−1 · A16. Here,
A16 can be computed by four bit wise XOR operations of ahγ + (ah + al). The
value A17 can then be obtained by multiplying A and A16 over F((22)2)2 , i.e., A17 =
λa2

h+(ah+al)al (since γ2+γ = λ). Hence, the inversion of x ∈ F28 can be computed
by performing the following steps:

Step 1. Apply the isomorphism function δ : F28 → F((22)2)2 , such that
A = ahγ + al = δ(x), where al, ah ∈ F((22)2)2 .

δ =



1 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 1 1 1 1 0 0 1
0 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1


(6.3)

Step 2. Compute A17 as d = λa2
h + (ah + al)al ∈ F24 .

Step 3. Evaluate the inversion of A17, namely, d′ = d−1.
Step 4. Compute the inversion A−1 = (A17)−1 · A16 = a′hλ + a′l where
a′h = d′ah ∈ F24 and a′l = d(ah + al) ∈ F24 .
Step 5. Compute the inversion of x by applying the inverse mapping function
δ−1 : F((22)2)2 → F28 , i.e., x−1 = δ−1(a′hγ + a′l).

δ−1 =



1 0 1 0 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 1 0 0 1
0 1 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 1


(6.4)

Secure Inversion over Composite Field.

Instead of securely raising an element to 254, the method from [KHL11] performs
secure inversion by using composite field method, i.e., it securely masks the afore-
mentioned five steps.
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From (6.1) we already know that the linear functions δ and δ−1 can be masked
by simply applying the function on each share separately. The field multiplication
in F24 can be masked in the same way as shown in Algorithm 39. The multiplicative
inversion in F24 , i.e., raising the operand to 14, can be implemented as a combination
of two linear operations (namely, squaring and raising to power 4) and one secure
field multiplication, which is constructed as follows:

x
x2
−→
S

x2 x2x−−→
M

x3 (x3)4
−−−→

2S
x12 x12x2

−−−→
M

x14 (6.5)

All these operations can be directly masked using the techniques proposed in [RP10].
We recall the algorithm to compute secure inversion in F24 in Algorithm 42.

Algorithm 42 SecExp14

Input: (xi) for 0 ≤ i ≤ d with
d⊕
i=0

xi = x

Output: (yi) for 0 ≤ i ≤ d with
d⊕
i=0

yi = x14

1: for i = 0 to d do
2: zi ← x2

i

3: end for
4: (zi)0≤i≤d ← RefreshMasks ((zi)0≤i≤d)
5: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (xi)0≤i≤d)
6: for i = 0 to d do
7: wi ← y4

i

8: end for
9: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (wi)0≤i≤d)

10: return (yi)0≤i≤d

We can see that we only need two calls to SecMult procedure here and hence is
more efficient than Algorithm 40. To further improve the efficiency for implementing
their solutions on embedded systems, the authors suggest to pre-compute several
tables of 16 elements or 256 elements, such as field multiplication table, squaring
table and isomorphism function table, which can significantly improve the overall
performance. The running times can be further reduced by combining the inverse
isomorphism function and affine function and storing the result in a table of size
256 bytes.

6.2 Higher-order Side-channel Security and Mask Re-
freshing

The security of Prouff-Rivain scheme and it’s subsequent improvement of Kim et
al. were proven using ISW model. The original result from ISW requires 2d + 1
shares for an algorithm to be secure against attacks of order d. However, the result
from Prouff and Rivain proved that it is sufficient to have d+ 1 shares provided the
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input shares are mutually independent of each other, thus improving the efficiency.
For this purpose, they make use of RefreshMasks procedure which re-randomizes the
input shares before every call to SecMult in case the inputs are not independent.

Though the procedures RefreshMasks and SecMult are secure against d-th or-
der attacks independently, Coron et al. showed that their combination is insecure
against attacks of order bd/2c+ 1. They also proposed a fix by adopting the ISW
scheme to securely compute multiplications of the from x�g(x), where g is a linear
function.

The attack from [CPRR13] combines bd/2c intermediate variables from the Sec-
Mult procedure and one intermediate variable from the RefreshMasks procedure.
The authors also gave an attack simulation for second-order Mutual Information
Analysis (MIA). Though the attacks were not highly successful in recovering the
key (less than 20% success rate), a more powerful attacker could possibly recover
larger portion of the secret key.

To avoid the attack the authors propose a solution avoiding the RefreshMasks
procedure and proposed a method to securely compute multiplication on dependent
inputs directly. Assume that the inputs to the SecMult are of the form (xi)1≤i≤d+1
and (yi)1≤i≤d+1 = g((xi)1≤i≤d+1) where g is a linear function. This is possible since
the inputs are dependent. Let function f : F28 → F28 is defined as follows:

f(x, y) = (x� g(y))⊕ (g(x)� y)
where � denotes the filed multiplication. By the law of bilinearity, for every

x, y, r ∈ F28 we have:
f(x, y) = f(x⊕ r, y)⊕ f(r, y) = f(x, y ⊕ r)⊕ f(x, r)

In the SecMult procedure (Algorithm 39) the only place where the inputs are
combined is in Step 4, which can rewritten with f as follows:

rj,i = (ri,j ⊕ (xi � yj))⊕ (xj � yi) = f(xi, xj)⊕ ri,j (6.6)
Let r′i,j be a freshly generated random, then form bilinearity, we have

f(xi, xj) = f(xi, xj ⊕ r′i,j)⊕ f(xi, r′i,j)
If we substitute this in 6.6, we get

rj,i = (ri,j ⊕ f(xi, r′i,j))⊕ f(xi, xj ⊕ r′i,j)
Hence by using freshly generated random and modifying Algorithm 39, we ob-

tain a secure solution which computes x � g(x), where g is a linear function. We
recall the corresponding algorithm below (Algorithm 43).

6.3 Improved Higher-order Secure Masking of AES S-
Box

In this section we show that the attack from [CPRR13] (recalled in section 6.2) can
be extended to the method proposed by Kim et al. as well [KHL11]. We also repair
the original countermeasure which overcomes the attack.
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Algorithm 43 CombSecMult
Input: (xi) and (yi) for 0 ≤ i ≤ d

Output: (zi) for 0 ≤ i ≤ d, with
d⊕
i=0

zi = x� y

1: for i = 0 to d do
2: for j = i+ 1 to d do
3: ri,j ← rand(2n) . Generate n-bit random
4: r′i,j ← rand(2n)
5: rj,i ← (ri,j ⊕ (xi � g(r′i,j))⊕ (r′i,j � g(xi))
6: ⊕(xi � g(xj ⊕ r′i,j))⊕ ((xj ⊕ r′i,j)� g(xi))
7: end for
8: end for
9: for i = 0 to d do

10: zi = xi � yi
11: for j = 1 to d do
12: if i 6= j then
13: zi ← zi ⊕ ri,j
14: end if
15: end for
16: end for
17: return (zi)0≤i≤d

The attack occurs when we combine the intermediate variables from the Sec-
Mult and RefreshMasks procedures i.e., in step 4 and step 5 of Algorithm 42. For
simplicity let us assume that d is even. Let us consider the value of the intermedi-
ate variable x′0 in the RefreshMasks procedure after d/2 iterations when called with
(zi)0≤i≤d:

z′0 = z0 ⊕
d/2⊕
i=1

ri

= z ⊕
d⊕
i=1

zi ⊕
d/2⊕
i=1

ri

= z ⊕
d/2⊕
i=1

(zi ⊕ ri ⊕ zd/2+i)

= g(x)⊕
d/2⊕
i=1

(g(xi)⊕ ri ⊕ g(xd/2+i))

Let us now consider the intermediate variables (z′i�xj)0≤i≤d/2;j=i+d/2 in step 4
of Algorithm 39 when called with (z′i)0≤i≤d and (xi)0≤i≤d:
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(yi)0≤i≤d/2 = z′i � xi+d/2
= (zi ⊕ ri)� xi+d/2
= (g(xi)⊕ ri)� xi+d/2

Now when we combine (yi)0≤i≤d/2 and z′0 we can retrieve z = g(x) as the
variables

⊕d/2
i=1(g(xi)⊕ ri⊕ g(xd/2+i)) and

⊕d/2
i=1(g(xi)⊕ ri)� xi+d/2 are dependent

on each other. Note that this attack is similar to the one proposed in [CPRR13].

Our Improved Algorithm for Secure Inversion over Composite Field.

In order to avoid the above attack, we propose a new secure inversion algorithm
as shown in Algorithm 44 using SecMult1 procedure (Algorithm 43) over F24 . It
can be seen that the new algorithm is similar to 42 except that the calls to Refresh-
Masks procedure and SecMult procedure are combined with a single call to SecMult1
procedure.

Theorem 6.1. Algorithm 44 is secure against d-th order attacks.

Proof. The security of Algorithm 44 directly follows from the proof given in Section
4 of [CPRR13] and hence is omitted.

Algorithm 44 SecInv4

Input: (xi) for 0 ≤ i ≤ d with
d⊕
i=0

xi = x

Output: (yi) for 0 ≤ i ≤ d with
d⊕
i=0

yi = x14

1: for i = 0 to d do
2: wi ← x2

i .
⊕
iwi = x2

3: end for
4: (zi)0≤i≤d ← CombSecMult((xi)0≤i≤d, (wi)0≤i≤d) .

⊕
i zi = x3

5: for i = 0 to d do
6: zi ← z4

i .
⊕
i zi = x12

7: end for
8: (yi)0≤i≤d ← CombSecMult((zi)0≤i≤d, (wi)0≤i≤d) .

⊕
i yi = x14

9: return (yi)0≤i≤d

Implementation Results

We implemented our improved scheme as well as Coron et al. [CPRR13] scheme
on an ARM NEON processor. NEON is an advanced SIMD (Single Instruction
Multiple Data) extension to some of the ARM processors. With the help of rich
instruction set provided by NEON and data parallelism, we could achieve significant
speed up for higher-order masking.
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Figure 6.1: Penalty factor for different HO-secure masked implementations of AES

We compared our implementation results with existing countermeasures from
CHES 2010 [RP10], CHES 2011 [KHL11] and Eurocrypt 2014 [Cor14]. For all
the schemes, we considered the security against attacks of order upto 4. We com-
pared the penalty factor for each of these schemes with respect to the unmasked
AES implementation. We report the corresponding results in Table 6.1. With
our proposed technique, the second and third order secure AES is only 8 and 13
times slower than the unmasked implementation as shown in Figure 6.1. Moreover,
our results achieve a speedup factor of three compared with the fastest solutions
available.

Table 6.1: Penalty factor for different HO masked implementations of AES
Method first-order second-order third-order fourth-order

CHES’10 [RP10] 65 132 235 -
CHES’11 [KHL11] - 22 39 -
Coron [Cor14] 439 1205 2411 4003

Coron et al. [CPRR13] (NEON) 9 19 32 60
Our scheme (NEON) 4 8 13 31



Chapter 7

Conversion of Security Proofs
from One Model to Another: A
New Issue

This chapter presents a new issue concerning the security proofs of masking schemes.
In general security of a masking scheme is proven in Only manipulated Data Leakage
(ODL) model which assumes that the leakage from a device depends only on the
manipulated data at a particular instance in time (e.g. Hamming weight). However,
in practice the leakage in some implementations is better modeled using memory
transition leakage (MTL) model, where the leakage is dependent on the transitions
on the memory bus (e.g. Hamming distance). This raises the question: how secure
are the masking schemes proven in ODL model when the model is changed to MTL?
We answer this question in the negative. We show that a second-order masking
scheme secure in ODL model can be broken using a first-order attack in MTL
model. We also show that the straightforward approach of erasing the memory
contents before every write operation does not work as well. This result emphasizes
the need to re-evaluate the security while porting an implementation from ODL
model to MTL model. This is a joint work with Jean-Sébastien Coron, Christophe
Giraud, Emmanuel Prouff, Soline Renner and Matthieu Rivain. A part of this work
appeared in the proceedings of COSADE, 2012 [CGP+12b].

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.1 ODL Model vs. MTL Model . . . . . . . . . . . . . . . . 112
7.1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Securing Block Cipher Against 2O-SCA . . . . . . . . . . 113
7.3 Attack of Algorithm 45 in the MTL Model . . . . . . . . 115

7.3.1 Straightforward Implementation of Algorithm 45 . . . . . 115
7.3.2 Description of the First-order Attack when RA = Rcmp . 116
7.3.3 Description of the First-order Attack when RA 6= Rcmp . 117

7.4 Study of a Straightforward Patch . . . . . . . . . . . . . . 118



112 Conversion of Security Proofs from One Model to Another: A New Issue

7.4.1 Transformation of Algorithm 45 into a MTL-Resistant Scheme118
7.4.2 Description of a Second-order Attack . . . . . . . . . . . . 119

7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 121

7.1 Introduction
Two different models are considered prominently in the literature to prove masking.
We recall these models below.

1. ODL Model: This leakage model assumes that the device leakage is a func-
tion of the manipulated data. Assume that an intermediate variable Z is
being manipulated by the device, then the leakage L satisfies:

L = ϕ(Z) +B (7.1)

where ϕ is a (non-constant) function and B an independent Gaussian noise
with zero mean. Examples of such leakage functions include the Hamming
weight (HW) function (or an affine function of the HW), in which case the
model is also referred to as Hamming weight model. Another example can be
the identity function i.e. the leakage reveals the value of Z.

2. MTL Model: This leakage model assumes that the device leaks on the
memory transitions when a value Z is manipulated. Here, the function ϕ
depends on the current value Z as well as the initial value in the memory Y .
Namely, we have:

L = ϕ(Z ⊕ Y ) +B. (7.2)

In the particular case where ϕ is the HW function, the leakage L defined in
(7.2) corresponds to the so-called Hamming distance (HD) model.

Several works have demonstrated the validity of HW and HD models in practice,
which are today commonly accepted by the SCA community. However other more
precise models exist in the literature (see for instance [SLP05, PSQ07, DPRS11]).
In the rest of this chapter, we keep the generality by considering two models : ODL
model (Only manipulated Data Leak) and MTL model (Memory Transition Leak),
each of them being defined by the leakage function expressed in (7.1) and (7.2)
respectively.

7.1.1 ODL Model vs. MTL Model

In general security proofs are given in ODL model due to it’s simplicity. The same
is the case with second-order secure masking scheme proposed by Prouff and Rivain
in [RDP08]. However, leakage of several devices can be better modeled using MTL
model (especially in ASIC implementations). Starting from this observation, a nat-
ural question is to decide at which extent a countermeasure proved to be secure in
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ODL model stays secure in MTL model. Similarly, another interesting and prac-
tically relevant problem is the design of methods to transform an implementation
secure in the first model into a new implementation secure in the second. Hence, if
we assume that the memory transitions leak information, the leakage is modeled by
ϕ(Y ⊕Z) +B. In such a model a masking countermeasure may become ineffective.
For instance, if Z corresponds to a masked variable X⊕M and if Y equals the mask,
then the leakage reveals information on X. A very straightforward idea to deal with
this issue is to erase the memory before each new writing (e.g. set Y to 0 in our
example). One may note that such a technique is often used in practice at either
the hardware or software level. Using such a method, the leakage ϕ(Y ⊕ Z) +B is
replaced by the sequence of consecutive leakages ϕ(Y ⊕ 0) +B1 and ϕ(0⊕Z) +B2
that is equivalent to ϕ(Y ) +B1 and ϕ(Z) +B2. The single difference with classical
ODL model is the additional assumption that the execution leaks the content of the
memory before the writings. Since this leakage corresponds to a variable that has
been manipulated prior to Z, it is reasonable to assume that the leakage ϕ(Y )+B1
has already been taken into account when establishing the security of the counter-
measure. As a consequence, this way to implement a countermeasure proved to be
secure in ODL model seems at a first glance also offers security on a device leaking
in MTL model.

In this chapter, we emphasize that a countermeasure proved to be secure in ODL
model may no longer stay secure in MTL model. Indeed, we exhibit a case where a
countermeasure proved to be second-order resistant in ODL model does no longer
provide security against first-order SCA when implemented in a device leaking on
the memory transitions. Then, we show that the natural method proposed above to
transfer a countermeasure resistant in ODL model into a countermeasure resistant
in MTL model is flawed. Those two results enlighten the actual lack of a framework
to solve the (practically) important issue of porting an implementation from one
family of devices to the other one.

7.1.2 Organization

This chapter is organized as follows. In Section 7.2, we briefly recall a second-order
countermeasure proved to be secure in ODL model [RDP08]. In Section 7.3, we
show that such a countermeasure can be broken by using a first-order attack in
MTL model. To thwart this attack, we apply in Section 7.4 the method described
previously which erases the memory before each new writing and we show that this
method is still insecure against second-order attacks. We provide the results of a
practical implementation of our attacks in Section 7.5.

7.2 Securing Block Cipher Against 2O-SCA

Application of masking is straightforward for linear functions, which can be com-
puted separately for each of the shares. For non-linear functions such as s-boxes, we
can use two methods. In the first method one evaluates the s-box function on the
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fly by masking all the operations independently. This works based on the algebraic
structure of the s-box and hence must be devised independently for each s-box. The
second method consists in pre-computing a randomized s-box lookup table in RAM
for every new execution of the algorithm and then mask the table. This technique
is generic and hence can be applied to any s-box.

At FSE 2008 Prouff and Rivain proposed two generic methods to secure s-box
lookup table against attacks of first and second-order [RDP08]. Their first method
requires an intermediate table of same size (stored in the RAM), where as the second
method avoids this table with an increase in the execution time. These algorithms
were recalled in Section 2.4.1. Their second algorithm is given below (Algorithm
45) for quick reference.

Algorithm 45 Prouff-Rivain Sec20-masking
Input: A masked value x̃ = x ⊕ t1 ⊕ t2 ∈ F2n , the pair of input masks (t1, t2) ∈

F2n × F2n , a pair of output masks (s1, s2) ∈ F2m × F2m , a (n,m) s-box function
F

Output: The masked S-box output F (x)⊕ s1 ⊕ s2 ∈ F2m

1: b← rand(1)
2: for a = 0 to 2n − 1 do
3: cmp← compareb(t1 ⊕ a, t2)
4: Rcmp ← (F (x̃⊕ a)⊕ s1)⊕ s2
5: end for
6: return Rb

To compute F (x) ⊕ s1 ⊕ s2, the core idea of Algorithm 45 is to successively
read all values of the lookup table F from index x̃ ⊕ a with a = 0 to index x̃ ⊕ a
with a = 2n − 1. When the correct value F (x) ⊕ s1 ⊕ s2 is accessed, it is stored
in a pre-determined register Rb whereas the other values F (x̃ ⊕ a) ⊕ s1 ⊕ s2, with
x̃⊕ a 6= x, are stored in a garbage register Rb . In practice two registers R0 and R1
are used and their roles are chosen thanks to a random bit b.

Depending on the loop index a, the fourth step of Algorithm 45 processes the
following operation (as given in Algorithm 3):

{
cmp← b ; Rcmp ← F (x)⊕ s1 ⊕ s2 if a = t1 ⊕ t2
cmp← b ; Rcmp ← F (x̃⊕ a)⊕ s1 ⊕ s2 otherwise . (7.3)

In view of (7.3), it may be observed that the register Rb is modified only once
whereas Rb changes 2n − 1 times. As proven in [RDP08], this behavior difference
between the registers Rb and Rb cannot be successfully exploited by a second-order
attack when the device leaks in the ODL model. The proof can be straightforwardly
extended to any leakage model called linear, in which all bits of the manipulated
data leak independently. However, if Algorithm 45 must be implemented on a
physical device with a different leakage model, then the security proof in [RDP08]
can no longer be invoked. Hence, since the most common alternative is MTL model,
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it is particularly interesting to investigate whether Algorithm 45 stays secure in this
context. In the next section, we put forward the kind of security issues brought by
a straightforward implementation of Algorithm 45 on a device leaking the memory
transition. In particular, for a specific (but quite natural) implementation, we
exhibit a first-order SCA.

7.3 Attack of Algorithm 45 in the MTL Model

This section is organized as follows: first we present a straightforward implemen-
tation of the 2O-SCA countermeasure described in Algorithm 45. Then we expose
how a first-order attack in MTL model can break this second-order countermeasure.

In the analysis developed in this chapter, we will denote random variables by
capital letters (e.g. X) and their values by small letters (e.g. x).

7.3.1 Straightforward Implementation of Algorithm 45

In the following, we assume that the considered device is based on an assembler
language for which a register RA is used as accumulator. Moreover we assume that
registers RA, R0 and R1 are initially set to zero.

Based on these assumptions, the fourth step of Algorithm 45 can be implemented
in the following way:

4.1 RA ← x̃⊕ a
4.2 RA ← F (RA)
4.3 RA ← RA ⊕ s1
4.4 RA ← RA ⊕ s2
4.5 Rcmp ← RA

(7.4)

During this processing where X̃ = X ⊕ T1 ⊕ T2, the initial content of register
Rcmp, denoted by Y , satisfies the following equation depending on the values of the
loop index a, T1 and T2:

Y =



0 if a = 0 ,
0 if a = 1 and T1 ⊕ T2 = 0 ,
0 if a > 0 and T1 ⊕ T2 = a ,

F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2 if a > 1 and T1 ⊕ T2 = (a− 1) ,

F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2 otherwise.

(7.5)

In the following we will show that the distribution of the value Y defined in
(7.5) brings information on the sensitive variable X. We will consider two cases
depending on whether RA equals Rcmp or not.
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7.3.2 Description of the First-order Attack when RA = Rcmp

According to this decomposition, if we assume that the register Rcmp is the accu-
mulator register, then Step 4.5 of (7.4) is unnecessary and the register Rcmp leaks
at each state. This is in particular the case at Step 4.1,

In this part, we assume that the physical leakage of the device is modeled by
MTL model and hence the leakage L associated to Step 4.1 of (7.4) satisfies:

L ∼ ϕ(Y ⊕ X̃ ⊕ a) +B , (7.6)

where Y denotes the initial state of Rcmp before being updated with X̃⊕a, defined
above by (7.5).

From (7.5) and (7.6), we deduce:

L =



ϕ(X̃) +B if a = 0 ,
ϕ(X ⊕ 1) +B if a = 1 & T1 ⊕ T2 = 0 ,
ϕ(X) +B if a > 0 & T1 ⊕ T2 = a ,

ϕ(F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2 ⊕ X̃ ⊕ a) +B if a > 1 & T1 ⊕ T2 = (a− 1) ,

ϕ(F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2 ⊕ X̃ ⊕ a) +B otherwise.

When a = 0, the leakage L is an uniform value which brings no information on
the value X. Therefore in the following, we omit this particular case.

Hence, we have

L =


ϕ(X) +B if T1 ⊕ T2 = a ,
ϕ(X ⊕ 1) +B if T1 ⊕ T2 = 0 and a = 1 ,
ϕ(Z) +B otherwise ,

(7.7)

with Z a variable independent of X and with uniform distribution.

In view of (7.7), the leakage L depends on X. Indeed, the mean of (L|X = x)
satisfies:

E(L | X = x) =


1

2n × (ϕ(x) + ϕ(x⊕ 1)) + 2n−2
2n × E(ϕ(Z)) if a = 1 ,

1
2n × ϕ(x) + 2n−1

2n × E(ϕ(Z)) if a > 1 ,

or equivalently (since Z has uniform distribution):

E(L | X = x) =


1

2n × (ϕ(x) + ϕ(x⊕ 1)) + n×(2n−2)
2n+1 if a = 1 ,

1
2n × ϕ(x) + n×(2n−1)

2n+1 if a > 1 .

(7.8)

When a > 1, the mean in (7.8) is an affine function of ϕ(x) and it is an affine
function of (ϕ(x) + ϕ(x⊕ 1)) otherwise. Therefore in both cases the mean leakage
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reveals some information on X.
An adversary can thus target the second round in Algorithm 45 (i.e. a = 1) and
get a sample of observations for the leakage L defined as in (7.6). The value X typ-
ically corresponds to the bitwise addition between a secret sub-key K and a known
plaintext subpart M . In such a case and according to the statistical dependence
shown in (7.8), the set of observations can be used to perform a first-order SCA
allowing an attacker to recover the secret value K.

As an illustration, we simulated a first-order CPA in the Hamming weight model
without noise targeting the second loop (namely a = 1) with the AES S-box. The
secret key byte was recovered with a success rate of 99% by using 1.000.000 acqui-
sitions.

7.3.3 Description of the First-order Attack when RA 6= Rcmp

In this part, the accumulator register RA is assumed to be different from the register
Rcmp. Under such an assumption, Step 4.5 in (7.4) leaks the transition between the
initial content Y of Rcmp and the current content of RA. Namely, after denoting
T1 ⊕ T2 and S1 ⊕ S2 by T and S respectively, we have:

L = ϕ(Y ⊕ F (X ⊕ T ⊕ a)⊕ S) +B. (7.9)

Due to (7.5), Relation (7.9) may be developed in the following way according
to the values of a and T :

L =



ϕ( F (X ⊕ T )⊕ S ) +B if a = 0,
ϕ( F (X)⊕ S ) +B if a = 1 and T = (a− 1),
ϕ( F (X)⊕ S ) +B if a > 0 and T = a,
ϕ( Da⊕(a−2)F (X ⊕ (a− 2)⊕ (a− 1) ) +B if a > 1 and T = (a− 1),
ϕ( Da⊕(a−1)F (X ⊕ (a− 1)⊕ T ) ) +B otherwise,

(7.10)
where DyF denotes the derivative of F with respect to y ∈ Fn2 , which is defined for
every x ∈ Fn2 by DyF (x) = F (x)⊕ F (x⊕ y).

In the three first cases in (7.10), the presence of S implies that the leakage L
is independent of X. Indeed, in these cases the leakage is of the form ϕ(Z) + B
where Z is an uniform random variable independent of X. In the last two cases, S
does not appear anymore. As a consequence it may be checked that the leakage L
depends on X. Indeed, due to the law of total probability, for any x and a = 1, the
mean of (L|X = x) satisfies:

E(L|X = x) = 2µ
2n + 1

2n
2n−1∑
t=2

ϕ(DaF (x⊕ t)), (7.11)

where µ denotes the expectation E[ϕ(U)] with U uniform over F2n (e.g. for ϕ = HW
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we have µ = n/2). And when a > 1, the mean of (L|X = x) satisfies:

E(L|X = x) = µ

2n + 1
2n ϕ(Da⊕(a−2)F (x⊕ (a− 2)⊕ (a− 1)))

+ 1
2n

2n−1∑
t=0,t6=a,(a−1)

ϕ(Da⊕(a−1)F (x⊕ (a− 1)⊕ t)). (7.12)

From an algebraic point of view, the sums in (7.11) and (7.12) may be viewed as
the mean of the value taken by DaF (x⊕ t) (respectively Da⊕(a−1)F (x⊕ (a−1)⊕ t))
over the coset x⊕{t, t ∈ [2, 2n−1]} (respectively x⊕{t, t ∈ [0, 2n−1]\{a−1, a}}).
Since those cosets are not all equal, the means are likely to be different for some
values of x. Let us for instance consider the case of F equal to the AES S-box and
let us assume that ϕ is the identity function. In Relation (7.11), the sum equals
34066 if x = 1 and equals 34046 if x = 2. When a > 1, we have the similar obser-
vation.

From (7.11) and (7.12), we can deduce that the mean leakage reveals information
on X and thus, the set of observations can be used to perform a first-order SCA.

By exhibiting several attacks in this section, we have shown that the second-
order countermeasure proved to be secure in ODL model may be broken by a first-
order attack in MTL model. These attacks demonstrate that a particular attention
must be paid when implementing Algorithm 45 on a device leaking in MTL model.
Otherwise, first-order leakage may occur as those exploited in the attacks presented
above. As already mentioned in the introduction, a natural solution to help the
security designer to deal with those security traps could be to systematically erase
the registers before any writing. This solution is presented and discussed in the
next section.

7.4 Study of a Straightforward Patch

In the following, we present a straightforward method to patch the flaw exhibited in
the previous section. The aim of this patch is to transform an implementation secure
in ODL model into an implementation secure in MTL model. It essentially consists
in erasing the memory before each new writing. In this section, we evaluate this
strategy when applied to implement Algorithm 45 leaking in MTL model. Then, we
show that this natural method does not suffice to go from security in ODL model
to security in MTL model. Indeed, we present a second-order attack against the
obtained second-order countermeasure.

7.4.1 Transformation of Algorithm 45 into a MTL-Resistant Scheme

As in the previous section, we assume that the leakage model is MTL model and
that the registers Rb and Rb are initially set to zero. In order to preserve the se-
curity proof given in the first model, we apply a solution consisting in erasing the
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memory before each new writing.

Based on these assumptions, the fourth step of Algorithm 45 can be implemented
in the following way:

4.1 Rcmp ← 0
4.2 Rcmp ← F (x̃⊕ a)⊕ s1 ⊕ s2

(7.13)

As previously, we assume that the initial state of Rcmp before Step 4.1 is equal
to Y . Then, according to this decomposition, the register Rcmp is set to 0 before
the writing of Z = F (X̃ ⊕ a)⊕ S1 ⊕ S2 in the Step 4.2. Hence, the leakage defined
by (7.6) is replaced by the sequence of consecutive leakages ϕ(Y, 0) +B1 (Step 4.1),
ϕ(0, Z) +B2 (Step 4.2), that is ϕ(Y ) +B1, ϕ(Z) +B2. However this model is not
equivalent to the ODL model since here the previous value in Rcmp leaks whenever
it is erased. And as we show hereafter, such a leakage enables a second-order attack
breaking the countermeasure although secure in the ODL model.

7.4.2 Description of a Second-order Attack

To perform our second-order attack, we use two information leakages L1 and L2
during the same execution of Algorithm 45 implemented with (7.13).

The first leakage L1 corresponds to the manipulation of X̃ prior to Algorithm
45. L1 thus satisfies:

L1 ∼ ϕ(X̃) +B0. (7.14)

The second leakage L2 corresponds to Step 4.1 of (7.13). Thus it satisfies:

L2 ∼ ϕ(Y ) +B1. (7.15)

From (7.5) and (7.15), we deduce:

L2 =



ϕ(0) +B1 if a = 0 ,
ϕ(0) +B1 if a = 1 and T1 ⊕ T2 = 0 ,
ϕ(0) +B1 if a > 0 and T1 ⊕ T2 = a ,

ϕ(F (X̃ ⊕ (a− 2))⊕ S1 ⊕ S2) +B1 if a > 1 and T1 ⊕ T2 = (a− 1) ,

ϕ(F (X̃ ⊕ (a− 1))⊕ S1 ⊕ S2) +B1 otherwise.
(7.16)

which implies that:

L2 =



ϕ(0) +B1 if a = 0 ,
ϕ(0) +B1 if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(Z) +B1 if a = 1 and T1 ⊕ T2 6= 0 or 1 ,
ϕ(0) +B1 if a > 1 and T1 ⊕ T2 = a ,
ϕ(Z) +B1 if a > 1 and T1 ⊕ T2 6= a ,

(7.17)

where Z is a variable independent of X and with uniform distribution.
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Figure 7.1: Convergence with simulated curves without noise, for a = 1.

From (7.17), the leakage is independent from T1 ⊕ T2 when a = 0. For this
reason, in the following we only study the mean of L2 for a > 0:

E(L2) =


ϕ(0) if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(Z) if a = 1 and T1 ⊕ T2 6= 0 or 1 ,
ϕ(0) if a > 1 and T1 ⊕ T2 = a ,
ϕ(Z) if a > 1 and T1 ⊕ T2 6= a ,

or equivalently (since Z has uniform distribution):

E(L2) =


ϕ(0) if a = 1 and T1 ⊕ T2 = 0 or 1 ,
ϕ(0) if a > 1 and T1 ⊕ T2 = a ,
n
2 otherwise.

(7.18)

On the other hand, the leakage L1 depends by definition on X ⊕ T1 ⊕ T2. As
a consequence, one deduces that the pair (L1, L2) statistically depends on the sen-
sitive value X. Moreover, it can be seen in (7.18) that the leakage on T1 ⊕ T2 is
maximal when a = 1. An adversary can thus target the second loop in Algorithm
45 (i.e. a = 1), make measurements for the pair of leakages (L1, L2) and then
perform a 2O-CPA to extract information on X from those measurements.

We have simulated such a 2O-SCA with X = M ⊕K where M is a 8-bit value
known to the attacker and K a 8-bit secret key value. By combining L1 and L2
using the normalized multiplication and the optimal prediction function as defined
in [PRB09a], the secret value k is recovered with a success rate of 99% by using
less than 200.000 curves. Fig.1 represents the convergence of the maximal correla-
tion value for different key guesses over the number of leakage measurements. Each
curve corresponds to some hypothesis on the secret K. In particular the black curve
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corresponds to the correct hypothesis k.

The second-order attack presented in this section show that erasing registers
before writing a new value does not suffice to port the security of an implementation
from ODL model to MTL model. For the case of Algorithm 45, a possible patch
is to erase Rcmp using a random value. However, though this patch works in the
particular case of Algorithm 45, it does not provide a generic method to transform a
dth-order countermeasure secure in the ODL model to a dth-order countermeasure
secure in the MTL model. The design of such a generic method is an interesting
problem that we leave open for future research.

7.5 Experimental Results
This section provides the practical evaluation of the attacks presented above. We
have verified the attacks on block ciphers with two different kinds of S-boxes: an
8-bit to 8-bit S-box (AES) and two 4-bit to 4-bit S-boxes (PRESENT and Klein).
We have implemented Algorithm 45 as described in Section 7.2 on a 8-bit micro-
controller. Using 2O-CPA, we were able to find the secret key for all three S-boxes.
In case of the 4× 4 S-boxes, we needed fewer than 10.000 power traces to find the
correct key. However, for the 8× 8 S-box, the number was much higher, since more
than 150.000 traces were required to distinguish the correct key from the rest of the
key guesses.

Initially, we set the value in the two memory locations R0 and R1 to zero.
We randomly generate the plaintexts mi and the input/output masks ti,1, ti,2 and
si,1, si,2 using a uniform pseudo-random number generator where the value of i
varies from 1 to N (i.e., the number of measurements). Then, we calculate x̃i from
the correct key k via x̃i = k ⊕mi ⊕ ti,1 ⊕ ti,2. As described in Section 7.4, before
writing a new value to any memory location, we first erase its contents by writing 0,
and then write the new value as shown in (7.13). For verifying the attacks, we only
consider the power traces where a = 1. During respectively the manipulation of
the x̃i and the memory erasing, we measure the power consumption of the device.
This results in a sample of pairs of leakage points that are combined thanks to the
centered product combining function defined in [PRB09a]. For each key hypothesis
kj , the obtained combined leakage sample (Lj)i is correlated with the sample of
hypotheses (HW (mi ⊕ kj))i. The key guess for which the correlation coefficient is
the maximum will be the correct key.

Figure 7.2 and Figure 7.3 show the correlation traces for a 2O-CPA on the Klein
and PRESENT S-boxes, respectively. As it can be observed, the right key is found
in both cases with less than 10.000 power traces. Figure 7.4 shows the correlation
traces for a 2O-CPA on the AES S-box. Here the convergence of the traces to
the correct key is observable only after 150.000 traces. Finally, Figure 7.5 shows
the first-order attack on the PRESENT S-box in the Hamming Distance model as
described in Section 7.3. Here we implemented Algorithm 1 directly without the
additional step of erasing the memory contents before performing a write operation.
The power traces are collected for 50.000 inputs, and only the traces corresponding
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Figure 7.2: Convergence with practical implementation of 20-CPA for Klein.
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Figure 7.3: Convergence with practical implementation of 20-CPA for PRESENT

to the case a = 1 are considered. The correct key candidate can be identified with
less than 10.000 traces.
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Figure 7.4: Convergence with practical implementation of 20-CPA for AES.
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Figure 7.5: Convergence with practical implementation of 10-CPA for PRESENT.
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Chapter 8

Conclusions

In chapter 3, we addressed the problem of secure conversion between Boolean and
arithmetic masking for any order. By applying the ISW framework and Goubin’s re-
sults for first-order conversion, we developed two algorithms of the same asymptotic
complexity to securely add Boolean shares. We then described novel conversion al-
gorithms between Boolean and arithmetic masking that are provably secure at any
order. Practical experiments based on HMAC-SHA-1 as case study show that, in
the case of second and third-order security, using Boolean masking and perform-
ing secure addition on Boolean shares directly is more efficient than converting
between Boolean and arithmetic masking. Even though the proposed algorithms
entail a massive performance penalty, they can still be practically useful for ap-
plications like challenge-response authentication where only a single block of data
needs to be encrypted.

In chapter 4, we have described a new conversion algorithm from arithmetic to
Boolean masking with complexity O(log k) instead of O(k) for Goubin’s algorithm.
We have also described a variant for performing the arithmetic addition modulo
2k directly with Boolean shares, still with complexity O(log k) instead of O(k).
We then used the similar techniques to improve the complexity of higher-order
conversion algorithms from O(n2k) to O(n2 log k) for security against attacks of
order n. In practice, for arithmetic additions modulo 232 as in case of HMAC-SHA-
1, we obtain similar performances as Goubin’s algorithms and Debraize’s algorithm
and better performances for additions modulo 264.

In chapter 5, we proposed time-memory trade-off solutions for conversion be-
tween Boolean and arithmetic masking for first and second-order. For second- order
conversion, we improved the number of shares required from 5 to 3 when compared
to CGV method. Our first conversion algorithms were obtained by adapting the
second-order generic countermeasure due to Rivain et al. However these algorithms
become infeasible for conversion size of greater than 10 bits. We then improved
our solution using divide and conquer. We have shown that our improved algo-
rithms reduce the required time by 85% with negligible memory overhead (around
16 bytes).

One open issue here is to find a way to perform addition on Boolean shares
directly, which is secure against attacks of second-order. We can not apply the
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generic method of [RDP08] in this case because the S-box is not balanced. Such
an S-box would require input of size 2l+ 1-bit (l-bit for each of the two arguments
to addition and one bit for input carry) and output the l + 1-bit sum including
the carry. For this function to be balanced, each of the 2l+1 possible outputs must
be an image of exactly 2l elements. However, this is not true since the element 0
can be image of only one element i.e., 0 and hence we can mount a second-order
attack. Finding a solution to this problem could further improve the performance
of second-order masking.

In chapter 6 we examined the fast and provably secure higher-masking of AES
S-box proposed by Kim et al. at CHES 2011 [KHL11]. We have shown that their
n-th order secure scheme is actually insecure against attacks of order n/2 + 1. We
then gave an improved method which also fixes the flaw.

In chapter 7, we have shown that a particular attention must be paid when
implementing a countermeasure proved to be secure in one model on devices which
leak in another model. In particular we have shown that a second-order counter-
measure with security proof in ODL model is broken by using first-order SCA when
running on a device leaking in MTL model. Then, we have focused on a method
that looked at first glance very natural to a scheme resistant in ODL model and
shown that it doesn’t work as well. Our analysis pointed out flaws in the conversion
method and hence led us to identify two new issues that we think to be very promis-
ing for further research. Firstly, it is interesting to obtain a generic countermeasure
proved to be secure in any practical model. Secondly, the design of a method of
porting the security from a model to another one is also worth exploring.
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