3 research outputs found

    A Novel Digital Signature Scheme for Advanced Asymmetric Encryption Techniques

    Get PDF
    Digital signature schemes are practical mechanisms for achieving message integrity, authenticity, and non-repudiation. Several asymmetric encryption techniques have been proposed in the literature, each with its proper limitations. RSA and El Gamal prove their robustness, but are unsuitable in several domains due to their computational complexity. Other asymmetric encryption schemes have been proposed to provide a cloud homomorphic encryption service, where the researchers focused only on how to ensure the homomorphic property. This paper proposes a new digital signature scheme dedicated to a family of encryption techniques. The proposal consists of two parts: the first focused on the secret key, and the second focused on the public key. Signature validity checking was performed by multiplying these two parts to reform again the sender’s public key, then comparing the result with the decrypted message. The validation of the decrypted message guarantees data integrity, where the signer public key is used to ensure authenticity. The proposed scheme takes a shorter execution time for the entire signature operation, including signing and verification, compared to other modern techniques. The analysis showed its robustness against private key recovery and forgery attacks. The implementation results of the proposed scheme showed promising performance in terms of complexity and robustness. The results confirmed that the proposed scheme is efficient and effective for signature generation and verification

    Provable Secure Attribute-Based Proxy Signature Over Lattice Small Integer Solution Problem in Random Oracle Model

    No full text
    Current proxy signature schemes are mostly identity-based proxy signatures that distinguish users by identity. This signature method faces some problems, such as identity information leakage and single access control. Attribute-based proxy signature (ABPS) divides the signer’s identity information into a collection of attributes; thus, users’ identity information can be protected and access control can become fine-grained. With the development of quantum computers, the security of signature schemes based on traditional number theory problems is under threat. Therefore, we construct a new attribute-based proxy signature scheme on a lattice that can resist quantum attacks. This scheme has the properties of both attribute-based signatures and proxy signatures, i.e., fine-grained access control and strong undeniability properties. Moreover, based on the small integer solution problem (SIS), our scheme is provably secure in the random oracle model and protects the proxy signer in the adaptive security model
    corecore