404 research outputs found

    Fraud detections for online businesses: a perspective from blockchain technology

    Get PDF
    Background: The reputation system has been designed as an effective mechanism to reduce risks associated with online shopping for customers. However, it is vulnerable to rating fraud. Some raters may inject unfairly high or low ratings to the system so as to promote their own products or demote their competitors. Method: This study explores the rating fraud by differentiating the subjective fraud from objective fraud. Then it discusses the effectiveness of blockchain technology in objective fraud and its limitation in subjective fraud, especially the rating fraud. Lastly, it systematically analyzes the robustness of blockchain-based reputation systems in each type of rating fraud. Results: The detection of fraudulent raters is not easy since they can behave strategically to camouflage themselves. We explore the potential strengths and limitations of blockchain-based reputation systems under two attack goals: ballot-stuffing and bad-mouthing, and various attack models including constant attack, camouflage attack, whitewashing attack and sybil attack. Blockchain-based reputation systems are more robust against bad-mouthing than ballot-stuffing fraud. Conclusions: Blockchain technology provides new opportunities for redesigning the reputation system. Blockchain systems are very effective in preventing objective information fraud, such as loan application fraud, where fraudulent information is fact-based. However, their effectiveness is limited in subjective information fraud, such as rating fraud, where the ground-truth is not easily validated. Blockchain systems are effective in preventing bad mouthing and whitewashing attack, but they are limited in detecting ballot-stuffing under sybil attack, constant attacks and camouflage attack

    Achieving cybersecurity in blockchain-based systems: a survey

    Get PDF
    With The Increase In Connectivity, The Popularization Of Cloud Services, And The Rise Of The Internet Of Things (Iot), Decentralized Approaches For Trust Management Are Gaining Momentum. Since Blockchain Technologies Provide A Distributed Ledger, They Are Receiving Massive Attention From The Research Community In Different Application Fields. However, This Technology Does Not Provide With Cybersecurity By Itself. Thus, This Survey Aims To Provide With A Comprehensive Review Of Techniques And Elements That Have Been Proposed To Achieve Cybersecurity In Blockchain-Based Systems. The Analysis Is Intended To Target Area Researchers, Cybersecurity Specialists And Blockchain Developers. For This Purpose, We Analyze 272 Papers From 2013 To 2020 And 128 Industrial Applications. We Summarize The Lessons Learned And Identify Several Matters To Foster Further Research In This AreaThis work has been partially funded by MINECO, Spain grantsTIN2016-79095-C2-2-R (SMOG-DEV) and PID2019-111429RB-C21 (ODIO-COW); by CAM, Spain grants S2013/ICE-3095 (CIBERDINE),P2018/TCS-4566 (CYNAMON), co-funded by European Structural Funds (ESF and FEDER); by UC3M-CAM grant CAVTIONS-CM-UC3M; by the Excellence Program for University Researchers, Spain; and by Consejo Superior de Investigaciones Científicas (CSIC), Spain under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program)

    Privacy trust access control infrastructure using XACML

    Get PDF
    The use of personal, sensitive information, such as privileges and attributes, to gain access to computer resources in distributed environments raises an interesting paradox. On one hand, in order to make the services and resources accessible to legitimate users, access control infrastructure requires valid and provable service clients' identities or attributes to make decisions. On the other hand, the service clients may not be prepared to disclose their identity information or attributes to a remote party without determining in advance whether the service provider can be trusted with such sensitive information. Moreover, when clients give out personal information, they still are unsure of the extent of propagation and use of the information. This thesis describes an investigation of privacy preserving options in access control infrastructures, and proposes a security model to support the management of those options, based on extensible Access Control Markup Language (XACML) and Security Access Markup Language (SAML), both of which are OASIS security standards. Existing access control systems are typically unilateral in that the enterprise service provider assigns the access rights and makes the access control decisions, and there is no negotiation between the client and the service provider. As access control management systems lean towards being user-centric or federated, unilateral approaches can no longer adequately preserve the client's privacy, particularly where communicating parties have no pre-existing trust relationship. As a result, a unified approach that significantly improves privacy and confidentiality protection in distributed environments was considered. This resulted in the development of XACML Trust Management Authorization Infrastructure (XTMAI) designed to handle privacy and confidentiality mutually and simultaneously using the concept of Obligation of Trust (OoT) protocol. The OoT enables two or more transaction parties to exchange Notice of Obligations (NoB) (obligating constraints) as well as Signed Acceptance of Obligation (SAO), a proof of acceptance, as security assurances before exchange of sensitive resources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Scalable Architecture for Electronic Payments

    Full text link
    We present a scalable architecture for electronic retail payments via central bank digital currency and offer a solution to the perceived conflict between robust regulatory oversight and consumer affordances such as privacy and control. Our architecture combines existing work in payment systems and digital currency with a new approach to digital asset design for managing unforgeable, stateful, and oblivious assets without relying on either a central authority or a monolithic consensus system. Regulated financial institutions have a role in every transaction, and the consumer affordances are achieved through the use of non-custodial wallets that unlink the sender from the recipient in the transaction channel. This approach is fully compatible with the existing two-tiered banking system and can complement and extend the roles of existing money services businesses and asset custodians.Comment: 24 pages, 7 figures, 2 table

    Privacy trust access control infrastructure using XACML

    Get PDF
    The use of personal, sensitive information, such as privileges and attributes, to gain access to computer resources in distributed environments raises an interesting paradox. On one hand, in order to make the services and resources accessible to legitimate users, access control infrastructure requires valid and provable service clients' identities or attributes to make decisions. On the other hand, the service clients may not be prepared to disclose their identity information or attributes to a remote party without determining in advance whether the service provider can be trusted with such sensitive information. Moreover, when clients give out personal information, they still are unsure of the extent of propagation and use of the information. This thesis describes an investigation of privacy preserving options in access control infrastructures, and proposes a security model to support the management of those options, based on extensible Access Control Markup Language (XACML) and Security Access Markup Language (SAML), both of which are OASIS security standards. Existing access control systems are typically unilateral in that the enterprise service provider assigns the access rights and makes the access control decisions, and there is no negotiation between the client and the service provider. As access control management systems lean towards being user-centric or federated, unilateral approaches can no longer adequately preserve the client's privacy, particularly where communicating parties have no pre-existing trust relationship. As a result, a unified approach that significantly improves privacy and confidentiality protection in distributed environments was considered. This resulted in the development of XACML Trust Management Authorization Infrastructure (XTMAI) designed to handle privacy and confidentiality mutually and simultaneously using the concept of Obligation of Trust (OoT) protocol. The OoT enables two or more transaction parties to exchange Notice of Obligations (NoB) (obligating constraints) as well as Signed Acceptance of Obligation (SAO), a proof of acceptance, as security assurances before exchange of sensitive resources

    Unleashing the power of internet of things and blockchain: A comprehensive analysis and future directions.

    Get PDF
    As the fusion of the Internet of Things (IoT) and blockchain technology advances, it is increasingly shaping diverse fields. The potential of this convergence to fortify security, enhance privacy, and streamline operations has ignited considerable academic interest, resulting in an impressive body of literature. However, there is a noticeable scarcity of studies employing Latent Dirichlet Allocation (LDA) to dissect and categorize this field. This review paper endeavours to bridge this gap by meticulously analysing a dataset of 4455 journal articles drawn solely from the Scopus database, cantered around IoT and blockchain applications. Utilizing LDA, we have extracted 14 distinct topics from the collection, offering a broad view of the research themes in this interdisciplinary domain. Our exploration underscores an upswing in research pertaining to IoT and blockchain, emphasizing the rising prominence of this technological amalgamation. Among the most recurrent themes are IoT and blockchain integration in supply chain management and blockchain in healthcare data management and security, indicating the significant potential of this convergence to transform supply chains and secure healthcare data. Meanwhile, the less frequently discussed topics include access control and management in blockchain-based IoT systems and energy efficiency in wireless sensor networks using blockchain and IoT. To the best of our knowledge, this paper is the first to apply LDA in the context of IoT and blockchain research, providing unique perspectives on the existing literature. Moreover, our findings pave the way for proposed future research directions, stimulating further investigation into the less explored aspects and sustaining the growth of this dynamic field
    • …
    corecore