93 research outputs found

    A performance comparison of fullband and different subband adaptive equalisers

    Get PDF
    We present two different fractionally spaced (FS) equalisers based on subband methods, with the aim of reducing the computational complexity and increasing the convergence rate of a standard fullband FS equaliser. This is achieved by operating in decimated subbands; at a considerably lower update rate and by exploiting the prewhitening effect that a filter bank has on the considerable spectral dynamics of a signal received through a severely distorting channel. The two presented subband structures differ in their level of realising the feedforward and feedback part of the equaliser in the subband domain, with distinct impacts on the updating. Simulation results pinpoint the faster convergence at lower cost for the proposed subband equalisers

    Subband decomposition techniques for adaptive channel equalisation

    Get PDF
    In this contribution, the convergence behaviour of the adaptive linear equaliser based on subband decomposition technique is investigated. Two different subband-based linear equalisers are employed, with the aim of improving the equaliser's convergence performance. Simulation results over three channel models having different spectral characteristic are presented. Computer simulations indicate that subband-based equalisers outperform the conventional fullband linear equaliser when channel exhibit severe spectral dynamic. Convergence rate of subband equalisers are governed by the slowest subband, whereby different convergence behaviour in each individual subband is observed. Finally, the complexity of fullband and subband equalisers is discussed

    Paraunitary oversampled filter bank design for channel coding

    Get PDF
    Oversampled filter banks (OSFBs) have been considered for channel coding, since their redundancy can be utilised to permit the detection and correction of channel errors. In this paper, we propose an OSFB-based channel coder for a correlated additive Gaussian noise channel, of which the noise covariance matrix is assumed to be known. Based on a suitable factorisation of this matrix, we develop a design for the decoder's synthesis filter bank in order to minimise the noise power in the decoded signal, subject to admitting perfect reconstruction through paraunitarity of the filter bank. We demonstrate that this approach can lead to a significant reduction of the noise interference by exploiting both the correlation of the channel and the redundancy of the filter banks. Simulation results providing some insight into these mechanisms are provided

    Filter-Bank-Based Narrowband Interference Detection and Suppression in Spread Spectrum Systems

    Get PDF
    <p/> <p>A filter-bank-based narrowband interference detection and suppression method is developed and its performance is studied in a spread spectrum system. The use of an efficient, complex, critically decimated perfect reconstruction filter bank with a highly selective subband filter prototype, in combination with a newly developed excision algorithm, offers a solution with efficient implementation and performance close to the theoretical limit derived as a function of the filter bank stopband attenuation. Also methods to cope with the transient effects in case of frequency hopping interference are developed and the resulting performance shows only minor degradation in comparison to the stationary case.</p

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Subband adaptive filtering for acoustic echo control using allpass polyphase IIR filterbanks

    No full text
    Published versio
    corecore