34 research outputs found

    Protograph-Based LDPC Code Design for Ternary Message Passing Decoding

    Full text link
    A ternary message passing (TMP) decoding algorithm for low-density parity-check codes is developed. All messages exchanged between variable and check nodes have a ternary alphabet, and the variable nodes exploit soft information from the channel. A density evolution analysis is developed for unstructured and protograph-based ensembles. For unstructured ensembles the stability condition is derived. Optimized ensembles for TMP decoding show asymptotic gains of up to 0.6 dB with respect to ensembles optimized for binary message passing decoding. Finite length simulations of codes from TMP-optimized ensembles show gains of up to 0.5 dB under TMP compared to protograph-based codes designed for unquantized belief propagation decoding

    Near-capacity fixed-rate and rateless channel code constructions

    No full text
    Fixed-rate and rateless channel code constructions are designed for satisfying conflicting design tradeoffs, leading to codes that benefit from practical implementations, whilst offering a good bit error ratio (BER) and block error ratio (BLER) performance. More explicitly, two novel low-density parity-check code (LDPC) constructions are proposed; the first construction constitutes a family of quasi-cyclic protograph LDPC codes, which has a Vandermonde-like parity-check matrix (PCM). The second construction constitutes a specific class of protograph LDPC codes, which are termed as multilevel structured (MLS) LDPC codes. These codes possess a PCM construction that allows the coexistence of both pseudo-randomness as well as a structure requiring a reduced memory. More importantly, it is also demonstrated that these benefits accrue without any compromise in the attainable BER/BLER performance. We also present the novel concept of separating multiple users by means of user-specific channel codes, which is referred to as channel code division multiple access (CCDMA), and provide an example based on MLS LDPC codes. In particular, we circumvent the difficulty of having potentially high memory requirements, while ensuring that each userโ€™s bits in the CCDMA system are equally protected. With regards to rateless channel coding, we propose a novel family of codes, which we refer to as reconfigurable rateless codes, that are capable of not only varying their code-rate but also to adaptively modify their encoding/decoding strategy according to the near-instantaneous channel conditions. We demonstrate that the proposed reconfigurable rateless codes are capable of shaping their own degree distribution according to the nearinstantaneous requirements imposed by the channel, but without any explicit channel knowledge at the transmitter. Additionally, a generalised transmit preprocessing aided closed-loop downlink multiple-input multiple-output (MIMO) system is presented, in which both the channel coding components as well as the linear transmit precoder exploit the knowledge of the channel state information (CSI). More explicitly, we embed a rateless code in a MIMO transmit preprocessing scheme, in order to attain near-capacity performance across a wide range of channel signal-to-ratios (SNRs), rather than only at a specific SNR. The performance of our scheme is further enhanced with the aid of a technique, referred to as pilot symbol assisted rateless (PSAR) coding, whereby a predetermined fraction of pilot bits is appropriately interspersed with the original information bits at the channel coding stage, instead of multiplexing pilots at the modulation stage, as in classic pilot symbol assisted modulation (PSAM). We subsequently demonstrate that the PSAR code-aided transmit preprocessing scheme succeeds in gleaning more information from the inserted pilots than the classic PSAM technique, because the pilot bits are not only useful for sounding the channel at the receiver but also beneficial for significantly reducing the computational complexity of the rateless channel decoder

    Raptor Codes in the Low SNR Regime

    Full text link
    In this paper, we revisit the design of Raptor codes for binary input additive white Gaussian noise (BIAWGN) channels, where we are interested in very low signal to noise ratios (SNRs). A linear programming degree distribution optimization problem is defined for Raptor codes in the low SNR regime through several approximations. We also provide an exact expression for the polynomial representation of the degree distribution with infinite maximum degree in the low SNR regime, which enables us to calculate the exact value of the fractions of output nodes of small degrees. A more practical degree distribution design is also proposed for Raptor codes in the low SNR regime, where we include the rate efficiency and the decoding complexity in the optimization problem, and an upper bound on the maximum rate efficiency is derived for given design parameters. Simulation results show that the Raptor code with the designed degree distributions can approach rate efficiencies larger than 0.95 in the low SNR regime.Comment: Submitted to the IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:1510.0772

    ์ €๋ฐ€๋„ ๋ถ€ํ˜ธ์˜ ์‘์šฉ: ๋ฌถ์Œ ์ง€๊ทธ์žฌ๊ทธ ํŒŒ์šดํ‹ด ๋ถ€ํ˜ธ์™€ WOM ๋ถ€ํ˜ธ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 2. ๋…ธ์ข…์„ .This dissertation contains the following two contributions on the applications of sparse codes. Fountain codes Batched zigzag (BZ) fountain codes โ€“ Two-phase batched zigzag (TBZ) fountain codes Write-once memory (WOM) codes โ€“ WOM codes implemented by rate-compatible low-density generator matrix (RC-LDGM) codes First, two classes of fountain codes, called batched zigzag fountain codes and two-phase batched zigzag fountain codes, are proposed for the symbol erasure channel. At a cost of slightly lengthened code symbols, the involved message symbols in each batch of the proposed codes can be recovered by low complexity zigzag decoding algorithm. Thus, the proposed codes have low buffer occupancy during decoding process. These features are suitable for receivers with limited hardware resources in the broadcasting channel. A method to obtain degree distributions of code symbols for the proposed codes via ripple size evolution is also proposed by taking into account the released code symbols from the batches. It is shown that the proposed codes outperform Luby transform codes and zigzag decodable fountain codes with respect to intermediate recovery rate and coding overhead when message length is short, symbol erasure rate is low, and available buffer size is limited. In the second part of this dissertation, WOM codes constructed by sparse codes are presented. Recently, WOM codes are adopted to NAND flash-based solid-state drive (SSD) in order to extend the lifetime by reducing the number of erasure operations. Here, a new rewriting scheme for the SSD is proposed, which is implemented by multiple binary erasure quantization (BEQ) codes. The corresponding BEQ codes are constructed by RC-LDGM codes. Moreover, by putting RC-LDGM codes together with a page selection method, writing efficiency can be improved. It is verified via simulation that the SSD with proposed rewriting scheme outperforms the SSD without and with the conventional WOM codes for single level cell (SLC) and multi-level cell (MLC) flash memories.1 Introduction 1 1.1 Background 1 1.2 Overview of Dissertation 5 2 Sparse Codes 7 2.1 Linear Block Codes 7 2.2 LDPC Codes 9 2.3 Message Passing Decoder 11 3 New Fountain Codes with Improved Intermediate Recovery Based on Batched Zigzag Coding 13 3.1 Preliminaries 17 3.1.1 Definitions and Notation 17 3.1.2 LT Codes 18 3.1.3 Zigzag Decodable Codes 20 3.1.4 Bit-Level Overhead 22 3.2 New Fountain Codes Based on Batched Zigzag Coding 23 3.2.1 Construction of Shift Matrix 24 3.2.2 Encoding and Decoding of the Proposed BZ Fountain Codes 25 3.2.3 Storage and Computational Complexity 28 3.3 Degree Distribution of BZ Fountain Codes 31 3.3.1 Relation Between ฮจ(x)\Psi(x) and ฮฉ(x)\Omega(x) 31 3.3.2 Derivation of ฮฉ(x)\Omega(x) via Ripple Size Evolution 32 3.4 Two-Phase Batched Zigzag Fountain Codes with Additional Memory 40 3.4.1 Code Construction 41 3.4.2 Bit-Level Overhead 46 3.5 Numerical Analysis 49 4 Write-Once Memory Codes Using Rate-Compatible LDGM Codes 60 4.1 Preliminaries 62 4.1.1 NAND Flash Memory 62 4.1.2 Rewriting Schemes for Flash Memory 62 4.1.3 Construction of Rewriting Codes by BEQ Codes 65 4.2 Proposed Rewriting Codes 67 4.2.1 System Model 67 4.2.2 Multi-rate Rewriting Codes 68 4.2.3 Page Selection for Rewriting 70 4.3 RC-LDGM Codes 74 4.4 Numerical Analysis 76 5 Conclusions 80 Bibliography 82 ์ดˆ๋ก 94Docto
    corecore