36,627 research outputs found

    Protein Secondary Structure Prediction Using Cascaded Convolutional and Recurrent Neural Networks

    Full text link
    Protein secondary structure prediction is an important problem in bioinformatics. Inspired by the recent successes of deep neural networks, in this paper, we propose an end-to-end deep network that predicts protein secondary structures from integrated local and global contextual features. Our deep architecture leverages convolutional neural networks with different kernel sizes to extract multiscale local contextual features. In addition, considering long-range dependencies existing in amino acid sequences, we set up a bidirectional neural network consisting of gated recurrent unit to capture global contextual features. Furthermore, multi-task learning is utilized to predict secondary structure labels and amino-acid solvent accessibility simultaneously. Our proposed deep network demonstrates its effectiveness by achieving state-of-the-art performance, i.e., 69.7% Q8 accuracy on the public benchmark CB513, 76.9% Q8 accuracy on CASP10 and 73.1% Q8 accuracy on CASP11. Our model and results are publicly available.Comment: 8 pages, 3 figures, Accepted by International Joint Conferences on Artificial Intelligence (IJCAI

    Empirical study of deep neural network architectures for protein secondary structure prediction

    Get PDF
    Protein secondary structure prediction is a sub-problem of protein structure prediction. Instead of fully recovering the whole three dimensional structure from amino acid sequence, protein secondary structure prediction only aimed at predicting the local structures such as alpha helices, beta strands and turns for each small segment of a protein. Predicted protein secondary structure can be used for improving fold recognition, ab initial protein prediction, protein motifs prediction and sequence alignment. Protein secondary structure prediction has been extensively studied with machine learning approaches. And in recent years, multiple deep neural network methods have pushed the state-of-art performance of 8-categories accuracy to around 69 percent. Deep neural networks are good at capturing the global information in the whole protein, which are widely believed to be crucial for the prediction. And due to the development of high level neural network libraries, implementing and training neural networks are becoming more and more convenient and efficient. This project focuses on empirical performance comparison of various deep neural network architectures and the effects of hyper-parameters for protein secondary structure prediction. Multiple deep neural network architectures representing the state-of-the-art for secondary structure prediction are implemented using TensorFlow, the leading deep learning platform. In addition, a software environment for performing efficient empirical studies are implemented, which includes network input and parameter control, and training, validation, and test performance monitoring. An extensive amount of experiments have been conducted using popular datasets and benchmarks and generated some useful results. For example, the experimental results show that recurrent layers are useful in improving prediction accuracy, achieving up to 5 percent improvement on 8-category accuracy. This work also shows the trade off between running speed and building speed of the model, and the trade off between running speed and accuracy. As a result, a relatively small size recurrent network have been build and achieved 69.5 percent 8-category accuracy on dataset CB513

    Applications of deep neural networks to protein structure prediction

    Get PDF
    Professor Yi Shang, Dissertation Advisor; Professor Dong Xu, Dissertation Co-advisor.Includes vita.Field of Study: Computer science."July 2018."Protein secondary structure, backbone torsion angle and other secondary structure features can provide useful information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this dissertation, several new deep neural network architectures are proposed for protein secondary structure prediction: deep inception-inside-inception (Deep3I) networks and deep neighbor residual (DeepNRN) networks for secondary structure prediction; deep residual inception networks (DeepRIN) for backbone torsion angle prediction; deep dense inception networks (DeepDIN) for beta turn prediction; deep inception capsule networks (DeepICN) for gamma turn prediction. Every tool was then implemented as a standalone tool integrated into MUFold package and freely available to research community. A webserver called MUFold-SS-Angle is also developed for protein property prediction. The input feature to those deep neural networks is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, HHBlits profile and/or predicted shape string. The deep architecture enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, the proposed deep neural architectures outperformed the best existing methods and other deep neural networks significantly: The proposed DeepNRN achieved highest Q8 75.33, 72.9, 70.8 on CASP 10, 11, 12 higher than previous state-of-the-art DeepCNF-SS with 71.8, 72.3, and 69.76. The proposed MUFold-SS (Deep3I) achieved highest Q8 76.47, 74.51, 72.1 on CASP 10, 11, 12. Compared to the recently released state-of-the-art tool, SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the Phi angle prediction error by more than 2 degrees on average. DeepDIN outperformed significantly BetaTPred3 in both two-class and nine-class beta turn prediction on benchmark BT426 and BT6376. DeepICN is the first application of using capsule network to biological sequence analysis and outperformed all previous gamma-turn predictors on benchmark GT320.Includes bibliographical references (pages 114-131)

    On generalization of multilayer neural network applied to predicting protein secondary structure

    Get PDF
    A learning process of a single neural network (SNN) to improve prediction accuracy of protein secondary structure is optimized. The protein secondary structures are predicted using a multiple alignment of amino acid as the input data. A multi-modal neural network (MNN) has been proposed to improve the precision of prediction. This method uses five independent neural networks, and the final decision is made by averaging all outputs of five SNNs. In the proposed method, the same prediction accuracy can be achieved by using only a single NN and optimizing a learning process. In a learning process of protein structure prediction, over learning is easily occurred. So, the learning process is optimized so as to avoid the over learning. For this purpose, small learning rates, adding small random noise to the input data, and updating the connection weights by the average in some group are useful. The prediction accuracy 58% obtained by using the conventional SNN is improved to 66%, which is the same accuracy of the MNN, which needs five SNNs

    A dynamic Bayesian network approach to protein secondary structure prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein secondary structure prediction method based on probabilistic models such as hidden Markov model (HMM) appeals to many because it provides meaningful information relevant to sequence-structure relationship. However, at present, the prediction accuracy of pure HMM-type methods is much lower than that of machine learning-based methods such as neural networks (NN) or support vector machines (SVM).</p> <p>Results</p> <p>In this paper, we report a new method of probabilistic nature for protein secondary structure prediction, based on dynamic Bayesian networks (DBN). The new method models the PSI-BLAST profile of a protein sequence using a multivariate Gaussian distribution, and simultaneously takes into account the dependency between the profile and secondary structure and the dependency between profiles of neighboring residues. In addition, a segment length distribution is introduced for each secondary structure state. Tests show that the DBN method has made a significant improvement in the accuracy compared to other pure HMM-type methods. Further improvement is achieved by combining the DBN with an NN, a method called DBNN, which shows better <it>Q</it><sub>3 </sub>accuracy than many popular methods and is competitive to the current state-of-the-arts. The most interesting feature of DBN/DBNN is that a significant improvement in the prediction accuracy is achieved when combined with other methods by a simple consensus.</p> <p>Conclusion</p> <p>The DBN method using a Gaussian distribution for the PSI-BLAST profile and a high-ordered dependency between profiles of neighboring residues produces significantly better prediction accuracy than other HMM-type probabilistic methods. Owing to their different nature, the DBN and NN combine to form a more accurate method DBNN. Future improvement may be achieved by combining DBNN with a method of SVM type.</p

    Protein Secondary Structure Prediction Using Support Vector Machines, Nueral Networks and Genetic Algorithms

    Get PDF
    Bioinformatics techniques to protein secondary structure prediction mostly depend on the information available in amino acid sequence. Support vector machines (SVM) have shown strong generalization ability in a number of application areas, including protein structure prediction. In this study, a new sliding window scheme is introduced with multiple windows to form the protein data for training and testing SVM. Orthogonal encoding scheme coupled with BLOSUM62 matrix is used to make the prediction. First the prediction of binary classifiers using multiple windows is compared with single window scheme, the results shows single window not to be good in all cases. Two new classifiers are introduced for effective tertiary classification. This new classifiers use neural networks and genetic algorithms to optimize the accuracy of the tertiary classifier. The accuracy level of the new architectures are determined and compared with other studies. The tertiary architecture is better than most available techniques

    Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network

    Get PDF
    BACKGROUND: Protein-Carbohydrate interactions are crucial in many biological processes with implications to drug targeting and gene expression. Nature of protein-carbohydrate interactions may be studied at individual residue level by analyzing local sequence and structure environments in binding regions in comparison to non-binding regions, which provide an inherent control for such analyses. With an ultimate aim of predicting binding sites from sequence and structure, overall statistics of binding regions needs to be compiled. Sequence-based predictions of binding sites have been successfully applied to DNA-binding proteins in our earlier works. We aim to apply similar analysis to carbohydrate binding proteins. However, due to a relatively much smaller region of proteins taking part in such interactions, the methodology and results are significantly different. A comparison of protein-carbohydrate complexes has also been made with other protein-ligand complexes. RESULTS: We have compiled statistics of amino acid compositions in binding versus non-binding regions- general as well as in each different secondary structure conformation. Binding propensities of each of the 20 residue types and their structure features such as solvent accessibility, packing density and secondary structure have been calculated to assess their predisposition to carbohydrate interactions. Finally, evolutionary profiles of amino acid sequences have been used to predict binding sites using a neural network. Another set of neural networks was trained using information from single sequences and the prediction performance from the evolutionary profiles and single sequences were compared. Best of the neural network based prediction could achieve an 87% sensitivity of prediction at 23% specificity for all carbohydrate-binding sites, using evolutionary information. Single sequences gave 68% sensitivity and 55% specificity for the same data set. Sensitivity and specificity for a limited galactose binding data set were obtained as 63% and 79% respectively for evolutionary information and 62% and 68% sensitivity and specificity for single sequences. Propensity and other sequence and structural features of carbohydrate binding sites have also been compared with our similar extensive studies on DNA-binding proteins and also with protein-ligand complexes. CONCLUSION: Carbohydrates typically show a preference to bind aromatic residues and most prominently tryptophan. Higher exposed surface area of binding sites indicates a role of hydrophobic interactions. Neural networks give a moderate success of prediction, which is expected to improve when structures of more protein-carbohydrate complexes become available in future
    • …
    corecore