2,696,294 research outputs found
Hot-spot analysis for drug discovery targeting protein-protein interactions
Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions.
Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions.
Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft
Microcanonical versus Canonical Analysis of Protein Folding
The microcanonical analysis is shown to be a powerful tool to characterize
the protein folding transition and to neatly distinguish between good and bad
folders. An off-lattice model with parameter chosen to represent polymers of
these two types is used to illustrate this approach. Both canonical and
microcanonical ensembles are employed. The required calculations were performed
using parallel tempering Monte Carlo simulations. The most revealing features
of the folding transition are related to its first-order-like character,
namely, the S-bend pattern in the caloric curve, which gives rise to negative
microcanonical specific heats, and the bimodality of the energy distribution
function at the transition temperatures. Models for a good folder are shown to
be quite robust against perturbations in the interaction potential parameters.Comment: 4 pages, 4 figure
MAPPI-DAT : data management and analysis for protein-protein interaction data from the high-throughput MAPPIT cell microarray platform
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments
Fractal Analysis of Protein Potential Energy Landscapes
The fractal properties of the total potential energy V as a function of time
t are studied for a number of systems, including realistic models of proteins
(PPT, BPTI and myoglobin). The fractal dimension of V(t), characterized by the
exponent \gamma, is almost independent of temperature and increases with time,
more slowly the larger the protein. Perhaps the most striking observation of
this study is the apparent universality of the fractal dimension, which depends
only weakly on the type of molecular system. We explain this behavior by
assuming that fractality is caused by a self-generated dynamical noise, a
consequence of intermode coupling due to anharmonicity. Global topological
features of the potential energy landscape are found to have little effect on
the observed fractal behavior.Comment: 17 pages, single spaced, including 12 figure
Protein-RNA interactions: a structural analysis
A detailed computational analysis of 32 protein-RNA complexes is presented. A number of physical and chemical properties of the intermolecular interfaces are calculated and compared with those observed in protein-double-stranded DNA and protein-single-stranded DNA complexes. The interface properties of the protein-RNA complexes reveal the diverse nature of the binding sites. van der Waals contacts played a more prevalent role than hydrogen bond contacts, and preferential binding to guanine and uracil was observed. The positively charged residue, arginine, and the single aromatic residues, phenylalanine and tyrosine, all played key roles in the RNA binding sites. A comparison between protein-RNA and protein-DNA complexes showed that whilst base and backbone contacts (both hydrogen bonding and van der Waals) were observed with equal frequency in the protein-RNA complexes, backbone contacts were more dominant in the protein-DNA complexes. Although similar modes of secondary structure interactions have been observed in RNA and DNA binding proteins, the current analysis emphasises the differences that exist between the two types of nucleic acid binding protein at the atomic contact level
Protein sectors: statistical coupling analysis versus conservation
Statistical coupling analysis (SCA) is a method for analyzing multiple
sequence alignments that was used to identify groups of coevolving residues
termed "sectors". The method applies spectral analysis to a matrix obtained by
combining correlation information with sequence conservation. It has been
asserted that the protein sectors identified by SCA are functionally
significant, with different sectors controlling different biochemical
properties of the protein. Here we reconsider the available experimental data
and note that it involves almost exclusively proteins with a single sector. We
show that in this case sequence conservation is the dominating factor in SCA,
and can alone be used to make statistically equivalent functional predictions.
Therefore, we suggest shifting the experimental focus to proteins for which SCA
identifies several sectors. Correlations in protein alignments, which have been
shown to be informative in a number of independent studies, would then be less
dominated by sequence conservation.Comment: 36 pages, 17 figure
- …
