328,714 research outputs found

    Uncovering the Mechanism of Aggregation of Human Transthyretin.

    Get PDF
    The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structures of these segments, we designed two non-natural peptide inhibitors that block aggregation. This work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy

    Spatial control of irreversible protein aggregation

    Get PDF
    Liquid cellular compartments spatially segregate from the cytoplasm and can regulate aberrant protein aggregation, a process linked to several medical conditions, including Alzheimer's and Parkinson's diseases. Yet the mechanisms by which these droplet-like compartments affect protein aggregation remain unknown. Here, we combine kinetic theory of protein aggregation and liquid-liquid phase separation to study the spatial control of irreversible protein aggregation in the presence of liquid compartments. We find that, even for weak interactions between the compartment constituents and the aggregating monomers, aggregates are strongly enriched inside the liquid compartment relative to the surrounding cytoplasm. We show that this enrichment is caused by a positive feedback mechanism of aggregate nucleation and growth which is mediated by a flux maintaining the phase equilibrium between the compartment and the cytoplasm. Our model predicts that the compartment volume that maximizes aggregate enrichment in the compartment is determined by the reaction orders of aggregate nucleation. The underlying mechanism of aggregate enrichment could be used to confine cytotoxic protein aggregates inside droplet-like compartments suggesting potential new avenues against aberrant protein aggregation. Our findings could also represent a common mechanism for the spatial control of irreversible chemical reactions in general

    Sequence-specific protein aggregation generates defined protein knockdowns in plants

    Get PDF
    Protein aggregation is determined by short (5-15 amino acids) aggregation-prone regions (APRs) of the polypeptide sequence that self-associate in a specific manner to form beta-structured inclusions. Here, we demonstrate that the sequence specificity of APRs can be exploited to selectively knock down proteins with different localization and function in plants. Synthetic aggregation-prone peptides derived from the APRs of either the negative regulators of the brassinosteroid (BR) signaling, the glycogen synthase kinase 3/Arabidopsis SHAGGY-like kinases (GSK3/ASKs), or the starch-degrading enzyme alpha-glucan water dikinase were designed. Stable expression of the APRs in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) induced aggregation of the target proteins, giving rise to plants displaying constitutive BR responses and increased starch content, respectively. Overall, we show that the sequence specificity of APRs can be harnessed to generate aggregation-associated phenotypes in a targeted manner in different subcellular compartments. This study points toward the potential application of induced targeted aggregation as a useful tool to knock down protein functions in plants and, especially, to generate beneficial traits in crops

    Filter Retardation Assay for Detecting and Quantifying Polyglutamine Aggregates Using Caenorhabditis elegans Lysates

    Get PDF
    Protein aggregation is a hallmark of several neurodegenerative diseases and is associated with impaired protein homeostasis. This imbalance is caused by the loss of the protein's native conformation, which ultimately results in its aggregation or abnormal localization within the cell. Using a C. elegans model of polyglutamine diseases, we describe in detail the filter retardation assay, a method that captures protein aggregates in a cellulose acetate membrane and allows its detection and quantification by immunoblotting

    Folding and Aggregation of Designed Proteins

    Full text link
    Studies of how protein fold have shown that the way protein clumps form in the test tube is similar to how proteins form the so-called ``amyloid'' deposits that are the pathological signal of a variety of diseases, among them the memory disorder Alzheimer's. Protein aggregation have traditionally been connected to either unfolded or native states. Inclusion body formation (disordered aggregation) has been assumed to arise from hydrophobic aggregation of the unfolded or denaturated states, while the amyloid fibrils (ordered aggregation) have been assumed to arise from native-like conformations in a process analogous to the polymerization of hemoglobin S. Making use of lattice-model simulations we find that both ordered and disordered aggregation arise from elementary structures which eventually build the folding nucleus of the heteropolymers, and takes place when some of the most strongly interacting amino acids establish their contacts leading to the formation of a specific subset of the native structure. These elementary structures can be viewed as the partially folded intermediates suggested to be involved in the aggregation of a number of proteins. These results have evolutionary implications, as the elementary structures forming the folding core of designed proteins contain the residues which are conserved among the members of homologous sequences.Comment: 10 pages, 2 colour ps figures and 1 b/w ps figur
    corecore