1,611,233 research outputs found
Introduction to Protein Structure Prediction
This chapter gives a graceful introduction to problem of protein three-
dimensional structure prediction, and focuses on how to make structural sense
out of a single input sequence with unknown structure, the 'query' or 'target'
sequence. We give an overview of the different classes of modelling techniques,
notably template-based and template free. We also discuss the way in which
structural predictions are validated within the global com- munity, and
elaborate on the extent to which predicted structures may be trusted and used
in practice. Finally we discuss whether the concept of a sin- gle fold
pertaining to a protein structure is sustainable given recent insights. In
short, we conclude that the general protein three-dimensional structure
prediction problem remains unsolved, especially if we desire quantitative
predictions. However, if a homologous structural template is available in the
PDB model or reasonable to high accuracy may be generated
Protein Structure Prediction: The Next Generation
Over the last 10-15 years a general understanding of the chemical reaction of
protein folding has emerged from statistical mechanics. The lessons learned
from protein folding kinetics based on energy landscape ideas have benefited
protein structure prediction, in particular the development of coarse grained
models. We survey results from blind structure prediction. We explore how
second generation prediction energy functions can be developed by introducing
information from an ensemble of previously simulated structures. This procedure
relies on the assumption of a funnelled energy landscape keeping with the
principle of minimal frustration. First generation simulated structures provide
an improved input for associative memory energy functions in comparison to the
experimental protein structures chosen on the basis of sequence alignment
CCharPPI web server: computational characterization of protein–protein interactions from structure
The atomic structures of protein–protein interactions are central to understanding their role in biological systems, and a wide variety of biophysical functions and potentials have been developed for their characterization and the construction of predictive models. These tools are scattered across a multitude of stand-alone programs, and are often available only as model parameters requiring reimplementation. This acts as a significant barrier to their widespread adoption. CCharPPI integrates many of these tools into a single web server. It calculates up to 108 parameters, including models of electrostatics, desolvation and hydrogen bonding, as well as interface packing and complementarity scores, empirical potentials at various resolutions, docking potentials and composite scoring functions.The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement PIEF-GA-2012-327899 and grant BIO2013-48213-R from Spanish Ministry of Economy and
Competitiveness.Peer ReviewedPostprint (published version
- …
