2,630 research outputs found

    Hybrid modeling, HMM/NN architectures, and protein applications

    Get PDF
    We describe a hybrid modeling approach where the parameters of a model are calculated and modulated by another model, typically a neural network (NN), to avoid both overfitting and underfitting. We develop the approach for the case of Hidden Markov Models (HMMs), by deriving a class of hybrid HMM/NN architectures. These architectures can be trained with unified algorithms that blend HMM dynamic programming with NN backpropagation. In the case of complex data, mixtures of HMMs or modulated HMMs must be used. NNs can then be applied both to the parameters of each single HMM, and to the switching or modulation of the models, as a function of input or context. Hybrid HMM/NN architectures provide a flexible NN parameterization for the control of model structure and complexity. At the same time, they can capture distributions that, in practice, are inaccessible to single HMMs. The HMM/NN hybrid approach is tested, in its simplest form, by constructing a model of the immunoglobulin protein family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs

    Combined mechanistic modeling and machine-learning approaches in systems biology - A systematic literature review

    Get PDF
    Background and objective: Mechanistic-based Model simulations (MM) are an effective approach commonly employed, for research and learning purposes, to better investigate and understand the inherent behavior of biological systems. Recent advancements in modern technologies and the large availability of omics data allowed the application of Machine Learning (ML) techniques to different research fields, including systems biology. However, the availability of information regarding the analyzed biological context, sufficient experimental data, as well as the degree of computational complexity, represent some of the issues that both MMs and ML techniques could present individually. For this reason, recently, several studies suggest overcoming or significantly reducing these drawbacks by combining the above-mentioned two methods. In the wake of the growing interest in this hybrid analysis approach, with the present review, we want to systematically investigate the studies available in the scientific literature in which both MMs and ML have been combined to explain biological processes at genomics, proteomics, and metabolomics levels, or the behavior of entire cellular populations. Methods: Elsevier Scopus®, Clarivate Web of Science™ and National Library of Medicine PubMed® databases were enquired using the queries reported in Table 1, resulting in 350 scientific articles. Results: Only 14 of the 350 documents returned by the comprehensive search conducted on the three major online databases met our search criteria, i.e. present a hybrid approach consisting of the synergistic combination of MMs and ML to treat a particular aspect of systems biology. Conclusions: Despite the recent interest in this methodology, from a careful analysis of the selected papers, it emerged how examples of integration between MMs and ML are already present in systems biology, highlighting the great potential of this hybrid approach to both at micro and macro biological scales

    Processing hidden Markov models using recurrent neural networks for biological applications

    Get PDF
    Philosophiae Doctor - PhDIn this thesis, we present a novel hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov Models (HMMs). Though sequence recognition problems could be potentially modelled through well trained HMMs, they could not provide a reasonable solution to the complicated recognition problems. In contrast, the ability of RNNs to recognize the complex sequence recognition problems is known to be exceptionally good. It should be noted that in the past, methods for applying HMMs into RNNs have been developed by other researchers. However, to the best of our knowledge, no algorithm for processing HMMs through learning has been given. Taking advantage of the structural similarities of the architectural dynamics of the RNNs and HMMs, in this work we analyze the combination of these two systems into the hybrid architecture. To this end, the main objective of this study is to improve the sequence recognition/classi_cation performance by applying a hybrid neural/symbolic approach. In particular, trained HMMs are used as the initial symbolic domain theory and directly encoded into appropriate RNN architecture, meaning that the prior knowledge is processed through the training of RNNs. Proposed algorithm is then implemented on sample test beds and other real time biological applications

    Hidden Markov models and neural networks for speech recognition

    Get PDF
    The Hidden Markov Model (HMMs) is one of the most successful modeling approaches for acoustic events in speech recognition, and more recently it has proven useful for several problems in biological sequence analysis. Although the HMM is good at capturing the temporal nature of processes such as speech, it has a very limited capacity for recognizing complex patterns involving more than first order dependencies in the observed data sequences. This is due to the first order state process and the assumption of state conditional independence between observations. Artificial Neural Networks (NNs) are almost the opposite: they cannot model dynamic, temporally extended phenomena very well, but are good at static classification and regression tasks. Combining the two frameworks in a sensible way can therefore lead to a more powerful model with better classification abilities. The overall aim of this work has been to develop a probabilistic hybrid of hidden Markov models and neural networks and ..

    Time-Space Tradeoff in Deep Learning Models for Crop Classification on Satellite Multi-Spectral Image Time Series

    Get PDF
    International audienceIn this article, we investigate several structured deep learning models for crop type classification on multi-spectral time series. In particular, our aim is to assess the respective importance of spatial and temporal structures in such data. With this objective, we consider several designs of convolutional, recurrent, and hybrid neural networks, and assess their performance on a large dataset of freely available Sentinel-2 imagery. We find that the best-performing approaches are hybrid configurations for which most of the parameters (up to 90%) are allocated to modeling the temporal structure of the data. Our results thus constitute a set of guidelines for the design of bespoke deep learning models for crop type classification
    • …
    corecore