7,021 research outputs found

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Plugging Side-Channel Leaks with Timing Information Flow Control

    Get PDF
    The cloud model's dependence on massive parallelism and resource sharing exacerbates the security challenge of timing side-channels. Timing Information Flow Control (TIFC) is a novel adaptation of IFC techniques that may offer a way to reason about, and ultimately control, the flow of sensitive information through systems via timing channels. With TIFC, objects such as files, messages, and processes carry not just content labels describing the ownership of the object's "bits," but also timing labels describing information contained in timing events affecting the object, such as process creation/termination or message reception. With two system design tools-deterministic execution and pacing queues-TIFC enables the construction of "timing-hardened" cloud infrastructure that permits statistical multiplexing, while aggregating and rate-limiting timing information leakage between hosted computations.Comment: 5 pages, 3 figure

    Employing Entropy in the Detection and Monitoring of Network Covert Channels

    Get PDF
    The detection of covert channels has quickly become a vital need due to their pervasive nature and the increasing popularity of the Internet. In recent years, new and innovative methods have been proposed to aid in the detection of covert channels. Existing detection schemes are often too specific and are ineffective against new covert channels. In this paper, we expound upon previous work done with timing channels and apply it to detecting covert storage channels. Our approach is based on the assumption that the entropy of covert channels will vary from that of previously observed, legitimate, communications. This change in the entropy of a process provides us with a method for identifying storage channels. Using this assumption we created proof of concept code capable of detecting various covert storage channels. The results of our experiments demonstrate that we can successfully detect existing and unpublished covert storage channels accurately

    Blindspot: Indistinguishable Anonymous Communications

    Get PDF
    Communication anonymity is a key requirement for individuals under targeted surveillance. Practical anonymous communications also require indistinguishability - an adversary should be unable to distinguish between anonymised and non-anonymised traffic for a given user. We propose Blindspot, a design for high-latency anonymous communications that offers indistinguishability and unobservability under a (qualified) global active adversary. Blindspot creates anonymous routes between sender-receiver pairs by subliminally encoding messages within the pre-existing communication behaviour of users within a social network. Specifically, the organic image sharing behaviour of users. Thus channel bandwidth depends on the intensity of image sharing behaviour of users along a route. A major challenge we successfully overcome is that routing must be accomplished in the face of significant restrictions - channel bandwidth is stochastic. We show that conventional social network routing strategies do not work. To solve this problem, we propose a novel routing algorithm. We evaluate Blindspot using a real-world dataset. We find that it delivers reasonable results for applications requiring low-volume unobservable communication.Comment: 13 Page
    • …
    corecore