
Plugging Side-Channel Leaks with Timing Information Flow Control

Bryan Ford

Yale University

http://bford.info/

Abstract

The cloud model’s dependence on massive paral-

lelism and resource sharing exacerbates the security

challenge of timing side-channels. Timing Information

Flow Control (TIFC) is a novel adaptation of IFC tech-

niques that may offer a way to reason about, and ulti-

mately control, the flow of sensitive information through

systems via timing channels. With TIFC, objects such

as files, messages, and processes carry not just content

labels describing the ownership of the object’s “bits,”

but also timing labels describing information contained

in timing events affecting the object, such as process

creation/termination or message reception. With two

system design tools—deterministic execution and pac-

ing queues—TIFC enables the construction of “timing-

hardened” cloud infrastructure that permits statistical

multiplexing, while aggregating and rate-limiting timing

information leakage between hosted computations.

1 Introduction

Timing channels have been known and studied for

decades [7, 13], but have received a resurgence of atten-

tion, particularly in the cloud computing context [3, 11].

While decentralized information flow mechanisms [9,

14] and trusted computing hardware and security ker-

nels [6, 15] may protect cloud data and computations

from break-ins and software vulnerabilities, these mech-

anisms offer no defense against information leakage via

timing side-channels, which are abundant in massively

parallel environments. Information theft may be possi-

ble even without active malware infection of a “victim”

computation, as demonstrated in proof-of-concept via

shared L1 data cache [10], shared functional units [12],

branch target cache [2], and instruction cache [1].

Although timing channels may represent a security

risk in any shared infrastructure, the cloud model exacer-

bates these risks in at least four ways, discussed in more

detail elsewhere [3] and briefly summarized here.

First, parallelism makes timing channel pervasive.

Many processing resources yield timing channels, and

even if one channel is exploitable only at low rate, an at-

tacker who can gain co-residency with a victim on mul-

tiple nodes and cores in a cloud [11] can multiply the

leakage rate by the level of parallelism.

Second, insider attacks become outsider attacks. An

attacker would have to break into or get an account on

private computing infrastructure before mounting a tim-

ing attack, but on the cloud the attacker need only pur-

chase the necessary CPU time from the provider.

Third, cloud-based timing attacks are unlikely to be

caught. Timing attacks do not violate conventional sys-

tem protection invariants, and are unlikely to set off

alarms or leave a trail of evidence. Further, while the

owner of a private machine can scan running compu-

tations for malicious activity, a cloud provider has no

prerogative to monitor its customers, and ironically, by

doing so could invite privacy concerns or lawsuits.

Fourth, the cloud business model depends on statis-

tical multiplexing. The classic approach to limit timing

channels, “reserving” hardware resources or timeslices

to customers in a demand-independent fashion, would

prevent the provider from oversubscribing and statisti-

cally multiplexing hardware resources for efficiency.

This paper introduces and informally explores an

extension of decentralized information flow control

(DIFC) techniques [9, 14] to the task of reasoning about

and controlling timing side-channels between computa-

tions hosted in a provider’s cloud infrastructure. The

approach currently addresses only timing side-channels

internal to a cloud and not, for example, resulting from

communication patterns visible on a public network [5].

Furthermore, this paper merely explores one potential

approach, which has not been rigorously formalized or

experimentally validated; doing so remains future work.

2 Timing Information Flow Control

This section introduces Timing Information Flow Con-

trol or TIFC, an extension of DIFC for reasoning about

and control the propagation of sensitive information

into, out of, or within a software system via timing chan-

nels. With TIFC, an operating system can attach explicit

labels or taints to processes and other objects, describ-

ing what sources, types, and granularities of timing in-

formation may have affected the state of the labeled ob-

ject. Using these labels, the OS can enforce policies

constraining how timing-derived information may flow

among processes and affect their results.

2.1 TIFC Model Overview

Our TIFC model builds on Flume [8], due to its sim-

plicity and elegance. As in Flume, we assign labels to

1



system objects such as processes, messages, and files. A

label can contain any number of tags, each of indicating

that the labelled object has a particular “taint,” or may

be derived from information owned by a particular user.

Unlike conventional DIFC, however, TIFC labels reflect

not only the content contained in such an object—i.e.,

the information contained in the bits comprising a mes-

sage or a process’s state—but also information that may

have affected the timing of observable events associated

with that object—a process starting or stopping, a mes-

sage being sent or received, etc. Consistent with con-

ventional, informal practices for reasoning about timing

channels [7, 13], our TIFC model does not attempt the

likely-infeasible task of eliminating timing channels en-

tirely, but rather seeks to impose limits on the rate at

which information might leak via timing channels.

To distinguish content and timing taint explicitly, we

give TIFC labels the form {LC/LT }, where LC is a

set of tags representing content taint, and LT is a set

of tags representing timing taint. As in Flume, content

tags in the set LC simply identify a user, such as Al-

ice or Bob. Timing tags, however, we give the form Pf ,

where U is a user such as Alice or Bob, and f is a fre-

quency representing the maximum rate with which user

U ’s information might leak via this timing event, in bits

per second. The frequency part of a timing tag may be

∞, indicating that information leakage may occur at an

unbounded rate. Thus, the label {A/A∞, Bf} attached

to a message might indicate that the content (bits) com-

prising the message contains Alice’s (and only Alice’s)

information, but that the timing with which the message

was sent might contain (and hence leak) both Alice’s and

Bob’s information—at an arbitrarily high rate in Alice’s

case, but up to at most f bits per second in Bob’s case.

2.1.1 Declassification Capabilities

To enforce information security policies, we similarly

build on Flume’s model. We allow a process P to trans-

mit information to another process or target object O
only if P ’s label is a subset of O’s, or if P holds de-

classification capabilities for any tags in P that are not

in O. A content declassification capability has the form

U−, and represents the ability to remove content tag U ,

as in Flume. TIFC also adds timing declassification ca-

pabilities of the form U−

f , representing the ability to

declassify information carried by timing channels, at a

rate up to frequency f . The “maximum-strength” timing

declassifier U−

∞
is equivalent to the content declassifier

U−; timing capabilities with finite frequencies represent

weakened versions of these infinite-rate capabilities.

Suppose process P1 has label {A/A∞, Bf}, and pro-

cess P2 has the empty label {−/−}. If process P1 were

allowed to send a message to P2, this action would leak

A’s information via both message content and the tim-

ing of the message’s transmission, and would leak B’s

information (at a rate up to f ) via timing alone. The sys-

tem disallows this communication, therefore, unless the

processes hold and use the relevant capabilities to adjust

their labels before interacting. In particular: (a) P1 must

hold the capability A− and use it to remove its content

tag A before sending the message; and (b) P1 must hold

and use a timing capability B−

f (or stronger) to declas-

sify timing tag Bf before sending the message.

2.2 Controlling Timing Channels

Timing labels and capabilities alone would not be use-

ful without mechanisms to control timing information

flows. This section briefly introduces two specific tools

useful for this purpose: deterministic execution and pac-

ing. The next section will illustrate how we might em-

ploy these tools in practical systems.

Deterministic Execution: In general, a process whose

label contains content tag U must also have timing tag

U∞, because the process’s flow of control—and hence

execution time—can vary depending on the U -owned

bits contained in its process state. The converse might

also seem inevitable: if a process has timing tag Uf

for any frequency f , and the process reads the current

time via gettimeofday(), for example, then the pro-

cess’s content subsequently depends on its execution

timing, hence the process must have content tag U . Even

if we disable system calls like gettimeofday(),

conventional programming models—especially parallel,

multithreaded models—enable processes and threads

to depend on timing in many implicit ways, such as

by measuring the relative execution speed of different

threads. One thread might simply remain in a tight loop

incrementing a shared memory counter, for example,

which other threads read and use as a “timer.”

System-enforced deterministic parallel execution, as

in Determinator [4], offers a tool to decouple a pro-

cess’s timing and content labels. With system-enforced

determinism, the OS kernel can prevent unprivileged

processes from exhibiting any timing dependencies—

even if the process maliciously attempts to introduce

such dependencies—except via explicit inputs obtained

through controlled channels. In effect, deterministic pro-

cesses cannot “tell time” except via explicit inputs con-

trolled by content labels. System-enforced determinism

thus makes it “safe” for a process’s content and tim-

ing labels to differ. If a process’s explicit inputs were

derived from user A’s information, but its execution

timing was also affected by B’s information at rate f ,

we give the process the label {A/A∞, Bf} rather than

{A,B/A∞, Bf}, safe in the knowledge that system-

enforced determinism prevents B’s “timing domain” in-

formation from leaking into the process’s “content do-

main” (its explicit register/memory state).

2



Pacing: Processes often interact with each other and

with the external world via queued messages or I/O, and

we leverage “traffic shaping” techniques common in net-

working to limit the rate at which information might can

across these queues via timing channels. We assume that

we can pace the output of a message queue, such that

regardless of how messages build up in the queue, the

queue’s output “releases” at most one message per tick

of a recurring timer, firing at some frequency f . After

each 1/f -time period, the queue’s output releases ex-

actly one message if the queue is non-empty, and no

message if the queue is empty. Between clock ticks,

the queue releases no information at all. Ignoring in-

formation contained in the content and order of queued

messages—which we control via content labels—we see

that a paced queue leaks at most one bit of timing infor-

mation per 1/f -time period: namely, whether or not the

queue was empty at that particular timer tick.

If messages flowing into a paced queue have a timing

tag of U ′

f for f ′ > f (including f ′
= ∞), we can safely

“downgrade” those timing tags to Uf at the queue’s out-

put, if the queue is paced at frequency f . If messages

with label {A/A∞, B∞} flow into a pacer with fre-

quency f , for example, for example, then messages at

the queue’s output have label {A/Af , Bf}. While we

for now can offer only an intuitive argument for the cor-

rectness of this rate-limiting principle, a formalized ar-

gument remains for future TIFC model development.

3 Using TIFC: Case Studies

We now illustrate TIFC with three simple examples, in

which two customers—Alice and Bob—each wish to

perform a privacy-sensitive computation on hardware

managed by a trusted cloud provider. Each customer de-

sires strong assurance that his data cannot leak to other

customers above a well-defined rate—even if his code

is infected with malware that attempts to leak his data

via timing channels. We make the simplifying assump-

tion that timing channels arise only from shared com-

pute resources, such as processor cores and the caches

and functional units supporting them. We neglect for

now other sources of timing channels, such as those aris-

ing from network communication paths either within the

cloud or between cloud and customers [11], although

this TIFC model may extend to other channels as well.

Dedicated Hardware Scenario: The first example, in

Figure 1(a), illustrates a “base case” scenario, where

the cloud provider controls timing channels merely by

imposing a fixed partitioning of hardware compute re-

sources between Alice and Bob. Alice submits compute

job requests via a cloud gateway node that the provider

dedicates exclusively to Alice, and similarly for Bob.

Each customer’s gateway forwards each job to a com-

pute core, on the same or another node, that is also ex-

clusive to the same customer. The gateway nodes attach

TIFC labels to each incoming request, and the provider’s

OS kernel or hypervisor managing each compute core

uses these labels to prevent either customer’s compute

jobs from leaking information to the other via either the

content or timing of messages within the cloud.

Figure 1(b) and (c) illustrates the (intuitively trivial)

reason this example provides timing isolation, by con-

trasting the system’s timing when Bob submits a “short”

job (b) with the timing when Bob submits a “long”

job (c). Since Alice’s job runs on a separate compute

core from Bob’s, Alice’s job completion time depends

only on the content of that job and Alice’s prior jobs—

information represented by the timing tag A∞—and is

not “tainted” by any timing dependency on Bob’s jobs.

Fixed-Reservation Timeslicing: Figure 2(a) shows a

less trivial example, where a shared compute core pro-

cesses both Alice’s and Bob’s jobs on a “fixed reserva-

tion” schedule that does not depend on either Alice’s or

Bob’s demand for the shared core. The shared compute

core maintains and isolates the state of each customer’s

job using standard process or virtual machine mecha-

nisms. The scheduling of these per-customer processors

onto the shared core, however, is controlled by a separate

entity we call the reservation scheduler. The scheduler

conceptually runs on its own dedicated CPU hardware,

and sends a message to the shared compute core at the

beginning of each timeslice indicating which customer’s

job to run next. The code implementing the scheduling

policy need not be trusted for information flow control

purposes, as long as trusted code attaches and checks

TIFC labels appropriately. In particular, the scheduler

and the messages it sends have the empty label {−/−},

which allows the scheduler’s messages to affect the tim-

ing of Alice’s and Bob’s labeled jobs running on the

shared core, without adding any new “taint.”

With its empty label, however, the reservation sched-

uler cannot receive any messages from the shared core

that might depend on either the content or timing of the

customers’ jobs. TIFC enforcement prevents the sched-

uler from obtaining feedback about whether either Al-

ice’s or Bob’s processes actually demand CPU time at

any given moment, forcing the scheduler to implement

a “demand-insensitive” policy, which isolates the tim-

ing of different customers’ jobs sharing the core, at the

cost of wasting shared core capacity. Figure 2(b) and

(c) shows execution schedules for the shared core in the

cases in which Bob’s job is short or long, respectively,

illustrating why Alice’s job completion time depends

only on Alice’s information—hence the timing label of

A∞—though Bob’s job may have executed on the same

core during different (demand-independent) timeslices.

3



Figure 1: Labeling Scenario: Private Per-Client Hardware Resources

Figure 2: Labeling Scenario: Shared Resource with Reservation-based Scheduling

Figure 3: Labeling Scenario: Shared Resource with Demand-driven Scheduling

4



Statistical Multiplexing: The above scenarios em-

body well-known timing channel control techniques [7,

13], to which TIFC merely adds an explicit, analyz-

able and enforceable labeling model. These standard

techniques unfortunately undermine the cloud business

model, however, by eliminating the cloud provider’s

ability to obtain efficiencies of scale through oversub-

scription and multiplexing [3]. Figure 3 illustrates a fi-

nal scenario that does allow statistical multiplexing, at

the cost of a controlled-rate timing information leak.

As above, this scenario includes a shared compute

core and a separate scheduler. Instead of the empty

(minimum) label, however, we now give the scheduler a

“high” (maximum) label containing all customers’ con-

tent and timing taints. This label allows the scheduler

to receive demand information from the shared com-

pute core, and even to receive messages from customers’

jobs themselves containing explicit scheduling requests

or “performance hints.” Since the scheduler’s content la-

bel (A,B) is higher than the content labels of either Al-

ice’s or Bob’s jobs, TIFC disallows the scheduler from

sending messages to Alice or Bob, or otherwise affecting

the content (process state) of their jobs.

The scheduler can send messages to the shared com-

pute core’s trusted control logic, however, to control

which customer’s jobs run in a particular timeslice. The

shared core runs jobs deterministically, ensuring that re-

gardless of how the scheduler runs them, each job’s re-

sult content depends only on that job’s input content and

not on execution timing. The scheduler’s control mes-

sages therefore “taint” all jobs with the timing tags—but

not the content tags—of all customers. The results of Al-

ice’s job, for example, has the label {A/A∞, B∞}, indi-

cating that the result content contains only Alice’s infor-

mation, but the job’s completion timing may also contain

Bob’s information. Without additional measures, this

high timing label would prevent Alice’s gateway from

sending Alice’s job results back to Alice, since the tim-

ing of these job completion messages could leak Bob’s

information at an arbitrarily high rate.

To rate-limit this timing leak, we assume that when re-

questing service from the cloud provider, Alice and Bob

agreed to allow timing information leaks up to a specific

rate f fixed throughout this particular cloud. To enforce

this policy, the cloud provider inserts a pacer on the path

of each customer’s job results queue, which releases the

results of at most one queued job at each frequency f
“tick” of a trusted provider-wide clock. Since all cus-

tomers allow timing information leaks up to rate f , each

user’s gateway node grants all other gateways a timing

declassification capability for rate f : thus, Alice’s and

Bob’s gateways can declassify each others’ timing la-

bels up to rate f . The TIFC rules thus allow Alice’s job

results to flow back to Alice at up to f jobs per second,

leaking at most f bits per second of Bob’s information.

Figure 3(b) and (c) compares two execution schedules

resulting from Bob’s job being “short” and “long,” re-

spectively. Due to demand-sensitive multiplexing, each

job’s completion time depends on the prior jobs of all

users, which may mix all users’ information at arbitrary

rate. Alice’s output pacer, however, delays the release

of each job’s results to a unique clock tick boundary,

“scrubbing” this timing channel down to the frequency

f at which the gateways can declassify the timing labels.

4 Conclusion

While TIFC may represent a promising approach to

hardening clouds against timing channels, much work

remains. We are in the process of formalizing the model

and security arguments, and implementing it in an exten-

sion of Determinator [4] for experimental validation.

References
[1] Onur Acıiçmez. Yet another microarchitectural attack: Exploit-

ing I-cache. In CCAW, November 2007.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Pre-

dicting secret keys via branch prediction. In CT-RSA, February

2007.

[3] Amittai Aviram, Sen Hu, Bryan Ford, and Ramakrishna Gum-

madi. Determinating timing channels in compute clouds. In

CCSW, October 2010.

[4] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. De-

terminator: OS support for efficient deterministic parallelism. In

9th OSDI, October 2010.

[5] David Brumley and Dan Boneh. Remote timing attacks are prac-

tical. In 12th USENIX Security Symposium, August 2003.

[6] Eric Keller et al. NoHype: Virtualized cloud infrastructure with-

out the virtualization. In 37th ISCA, June 2010.

[7] Richard A. Kemmerer. Shared resource matrix methodology:

An approach to identifying storage and timing channels. TOCS,

1(3):256–277, August 1983.

[8] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer,

M. Frans Kaashoek, Eddie Kohler, and Robert Morris. Infor-

mation flow control for standard os abstractions. In 21st SOSP,

October 2007.

[9] Andrew C. Myers and Barbara Liskov. A decentralized model

for information flow control. In 16th SOSP, October 1997.

[10] Colin Percival. Cache missing for fun and profit. In BSDCan,

May 2005.

[11] Thomas Ristenpart et al. Hey, you, get off of my cloud: Explor-

ing information leakage in third-party compute clouds. In 16th

CCS, pages 199–212, New York, NY, USA, 2009. ACM.

[12] Zhenghong Wang and Ruby B. Lee. Covert and side channels

due to processor architecture. In 22nd ACSAC, December 2006.

[13] John C. Wray. An analysis of covert timing channels. In IEEE

Symposium on Security and Privacy, May 1991.

[14] Nickolai Zeldovich et al. Making information flow explicit in

HiStar. In 7th OSDI, November 2006.

[15] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. Cloud-

Visor: Retrofitting protection of virtual machines in multi-tenant

cloud with nested virtualization. In 23rd SOSP, October 2011.

5


