17,402 research outputs found

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013

    Herding Vulnerable Cats: A Statistical Approach to Disentangle Joint Responsibility for Web Security in Shared Hosting

    Full text link
    Hosting providers play a key role in fighting web compromise, but their ability to prevent abuse is constrained by the security practices of their own customers. {\em Shared} hosting, offers a unique perspective since customers operate under restricted privileges and providers retain more control over configurations. We present the first empirical analysis of the distribution of web security features and software patching practices in shared hosting providers, the influence of providers on these security practices, and their impact on web compromise rates. We construct provider-level features on the global market for shared hosting -- containing 1,259 providers -- by gathering indicators from 442,684 domains. Exploratory factor analysis of 15 indicators identifies four main latent factors that capture security efforts: content security, webmaster security, web infrastructure security and web application security. We confirm, via a fixed-effect regression model, that providers exert significant influence over the latter two factors, which are both related to the software stack in their hosting environment. Finally, by means of GLM regression analysis of these factors on phishing and malware abuse, we show that the four security and software patching factors explain between 10\% and 19\% of the variance in abuse at providers, after controlling for size. For web-application security for instance, we found that when a provider moves from the bottom 10\% to the best-performing 10\%, it would experience 4 times fewer phishing incidents. We show that providers have influence over patch levels--even higher in the stack, where CMSes can run as client-side software--and that this influence is tied to a substantial reduction in abuse levels

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users
    • …
    corecore