76,907 research outputs found

    Protecting attributes and contents in online social networks

    Get PDF
    With the extreme popularity of online social networks, security and privacy issues become critical. In particular, it is important to protect user privacy without preventing them from normal socialization. User privacy in the context of data publishing and structural re-identification attacks has been well studied. However, protection of attributes and data content was mostly neglected in the research community. While social network data is rarely published, billions of messages are shared in various social networks on a daily basis. Therefore, it is more important to protect attributes and textual content in social networks. We first study the vulnerabilities of user attributes and contents, in particular, the identifiability of the users when the adversary learns a small piece of information about the target. We have presented two attribute-reidentification attacks that exploit information retrieval and web search techniques. We have shown that large portions of users with online presence are very identifiable, even with a small piece of seed information, and the seed information could be inaccurate. To protect user attributes and content, we adopt the social circle model derived from the concepts of "privacy as user perception" and "information boundary". Users will have different social circles, and share different information in different circles. We introduce a social circle discovery approach using multi-view clustering. We present our observations on the key features of social circles, including friendship links, content similarity and social interactions. We treat each feature as one view, and propose a one-side co-trained spectral clustering technique, which is tailored for the sparse nature of our data. We also propose two evaluation measurements. One is based on the quantitative measure of similarity ratio, while the other employs human evaluators to examine pairs of users, who are selected by the max-risk active evaluation approach. We evaluate our approach on ego networks of twitter users, and present our clustering results. We also compare our proposed clustering technique with single-view clustering and original co-trained spectral clustering techniques. Our results show that multi-view clustering is more accurate for social circle detection; and our proposed approach gains significantly higher similarity ratio than the original multi-view clustering approach. In addition, we build a proof-of-concept implementation of automatic circle detection and recommendation methods. For a user, the system will return its circle detection result from our proposed multi-view clustering technique, and the key words for each circle are also presented. Users can also enter a message they want to post, and the system will suggest which circle to disseminate the message

    Online privacy: towards informational self-determination on the internet : report from Dagstuhl Perspectives Workshop 11061

    Get PDF
    The Dagstuhl Perspectives Workshop "Online Privacy: Towards Informational Self-Determination on the Internet" (11061) has been held in February 6-11, 2011 at Schloss Dagstuhl. 30 participants from academia, public sector, and industry have identified the current status-of-the-art of and challenges for online privacy as well as derived recommendations for improving online privacy. Whereas the Dagstuhl Manifesto of this workshop concludes the results of the working groups and panel discussions, this article presents the talks of this workshop by their abstracts

    Online Privacy as a Collective Phenomenon

    Full text link
    The problem of online privacy is often reduced to individual decisions to hide or reveal personal information in online social networks (OSNs). However, with the increasing use of OSNs, it becomes more important to understand the role of the social network in disclosing personal information that a user has not revealed voluntarily: How much of our private information do our friends disclose about us, and how much of our privacy is lost simply because of online social interaction? Without strong technical effort, an OSN may be able to exploit the assortativity of human private features, this way constructing shadow profiles with information that users chose not to share. Furthermore, because many users share their phone and email contact lists, this allows an OSN to create full shadow profiles for people who do not even have an account for this OSN. We empirically test the feasibility of constructing shadow profiles of sexual orientation for users and non-users, using data from more than 3 Million accounts of a single OSN. We quantify a lower bound for the predictive power derived from the social network of a user, to demonstrate how the predictability of sexual orientation increases with the size of this network and the tendency to share personal information. This allows us to define a privacy leak factor that links individual privacy loss with the decision of other individuals to disclose information. Our statistical analysis reveals that some individuals are at a higher risk of privacy loss, as prediction accuracy increases for users with a larger and more homogeneous first- and second-order neighborhood of their social network. While we do not provide evidence that shadow profiles exist at all, our results show that disclosing of private information is not restricted to an individual choice, but becomes a collective decision that has implications for policy and privacy regulation
    corecore