3,098 research outputs found

    Protecting Voice Controlled Systems Using Sound Source Identification Based on Acoustic Cues

    Full text link
    Over the last few years, a rapidly increasing number of Internet-of-Things (IoT) systems that adopt voice as the primary user input have emerged. These systems have been shown to be vulnerable to various types of voice spoofing attacks. Existing defense techniques can usually only protect from a specific type of attack or require an additional authentication step that involves another device. Such defense strategies are either not strong enough or lower the usability of the system. Based on the fact that legitimate voice commands should only come from humans rather than a playback device, we propose a novel defense strategy that is able to detect the sound source of a voice command based on its acoustic features. The proposed defense strategy does not require any information other than the voice command itself and can protect a system from multiple types of spoofing attacks. Our proof-of-concept experiments verify the feasibility and effectiveness of this defense strategy.Comment: Proceedings of the 27th International Conference on Computer Communications and Networks (ICCCN), Hangzhou, China, July-August 2018. arXiv admin note: text overlap with arXiv:1803.0915

    Investigating the build-up of precedence effect using reflection masking

    Get PDF
    The auditory processing level involved in the build‐up of precedence [Freyman et al., J. Acoust. Soc. Am. 90, 874–884 (1991)] has been investigated here by employing reflection masked threshold (RMT) techniques. Given that RMT techniques are generally assumed to address lower levels of the auditory signal processing, such an approach represents a bottom‐up approach to the buildup of precedence. Three conditioner configurations measuring a possible buildup of reflection suppression were compared to the baseline RMT for four reflection delays ranging from 2.5–15 ms. No buildup of reflection suppression was observed for any of the conditioner configurations. Buildup of template (decrease in RMT for two of the conditioners), on the other hand, was found to be delay dependent. For five of six listeners, with reflection delay=2.5 and 15 ms, RMT decreased relative to the baseline. For 5‐ and 10‐ms delay, no change in threshold was observed. It is concluded that the low‐level auditory processing involved in RMT is not sufficient to realize a buildup of reflection suppression. This confirms suggestions that higher level processing is involved in PE buildup. The observed enhancement of reflection detection (RMT) may contribute to active suppression at higher processing levels

    Three-dimensional point-cloud room model in room acoustics simulations

    Get PDF
    • …
    corecore