68 research outputs found

    Caractérisation du rôle de deux interacteurs moléculaires du complexe de dégradation des microARN dans la régulation des courts ARN non codants chez le nématode C. elegans

    Get PDF
    Les courts ARN non codants tels que les microARN, les piARN et les siARN sont de petites molécules d’ARN de 20 à 30 nucléotides de long qui sont très bien conservées au cours de l’évolution. Elles s’associent à des protéines Argonautes afin de former un complexe effecteur appelé RISC (RNA induced silencing complex). Ces courtes séquences, ne codant pour aucune protéine, agissent comme de puissants régulateurs de l’expression des gènes. De nombreuses évidences supportent qu’une dérégulation du niveau d’expression de ces courts ARN non codants contribue au développement et au maintien de nombreuses pathologies telles que le cancer. De ce fait, il est essentiel pour la cellule de contrôler la stabilité des courts ARN non codants. Le contrôle de la maturation et de la stabilité de ces courts ARN non codants sont des mécanismes peu connus. L’objectif principal de mon doctorat a donc été de mieux comprendre comment le niveau des courts ARN non codants est contrôlé. Afin d’étudier plus en détail comment le niveau des microARN est régulé, nous avons identifié la phosphatase PPM-2 (PP2Cα chez l’humain) et l’E3 ubiquitine ligase HECD-1 (HectD1 chez l’humain) comme étant de nouveaux interacteurs du complexe de dégradation des microARN. Nous avons utilisé des approches de génétique et de biologie moléculaire chez le nématode C. elegans, pour étudier le rôle de la perte de fonction de ppm-2 et d’hecd1 dans la voie des courts ARN non codants. Nos travaux ont montré que la perte de fonction de ppm-2 induit des défauts développementaux qui sont associés à des défauts de la voie des microARN. De plus, l’absence de ppm-2 exacerbe les phénotypes développementaux observés dans des animaux où la voie des microARN est altérée. De manière intéressante, chez le mutant ppm-2, nous avons constaté que d’autres voies de courts ARN non codants, telles que la voie des piARN et celle de l’endosiARN nucléaire, sont affectées. Du point de vue moléculaire, nous avons observé une déstabilisation du niveau d’expression de plusieurs protéines Argonautes dans le mutant ppm-2. En effet, ces dernières sont envoyées à la dégradation par la voie du protéasome seulement chez des animaux mutés pour ppm-2. Concernant l’étude de HECD1, nous avons remarqué que la perte de fonction de cette ubiquitine ligase entrainait une diminution de la progéniture et une létalité embryonnaire attribuable à des défauts dans la gamétogénèse. De plus, nous avons observé une accumulation de miARN fonctionnels chez des animaux mutés pour hecd-1. L’ubiquitine ligase HECD-1 pourrait être impliquée dans la transcription ou la dégradation des miARN. En conclusion, nos résultats suggèrent que PPM-2 permet de contrôler la stabilité des protéines Argonautes en les dirigeant dans une voie alternative de dégradation et que l’ubiquitine ligase HECD-1 pourrait être impliquée dans la régulation des miARN en modulant leur transcription ou leur dégradation. Mes travaux de doctorat nous ont permis de mettre en lumière un nouveau modulateur des courts ARN non codants, PPM-2, qui agit via le contrôle de la régulation des Argonautes. Les avancées de la recherche dans le domaine des courts ARN non codants pourra permettre le développement de nouvelles thérapies.Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies

    Identification d'un complexe de dégradation des microARNs chez le nématode Caenorhabditis elegans

    Get PDF
    Présents chez tous les métazoaires, les microARNs jouent un rôle critique dans la régulation de gènes impliqués dans la prolifération et la différenciation cellulaire. Ces courtes molécules d'ARN altèrent la production protéique en liant spécifiquement les régions non codantes des ARNm. Les microARNs sont transcrits par l'ARN polymérase II (Pol II) sous forme d'un long transcrit primaire et vont passer par deux étapes de clivage successives pour former le microARN mature. Le microARN mature est pris en charge par une protéine Argonaute pour former le complexe effecteur de la voie, le miRISC. Chacune des étapes de la biogenèse des microARNs peut être régulée pour modifier la production globale ou spécifique des microARNs. Des études récentes ont démontré que la maturation et la stabilité des microARNs sont des facteurs importants pour conserver l'homéostasie cellulaire. De nombreuses évidences supportent qu'une altération du niveau cellulaire de ces petites molécules régulatrices contribue au développement et au maintien de diverses maladies, dont le cancer. À ce jour, il existe peu de connaissance sur le contrôle de la maturation et de la stabilité de ces courts ARNs non codants. Les deux Argonautes, alg-1 et alg-2 impliqués dans la voie des microARNs chez le nématode C. elegans sont synthétiques létaux. Un criblage génétique chez C. elegans visant à identifier de nouveaux gènes synthétiques létaux avec alg-2, a permis d'identifier la protéine DCS-1 comme étant impliqué dans la voie des microARNs. Chez C. elegans, la perte de dcs-1 affecte le niveau de plusieurs microARNs, affectant l'expression génique chez ces animaux. Des analyses biochimiques supportent que DCS-1 affecte l'activité d'une enzyme responsable de la dégradation des microARNs chez le nématode, et ce, de façon indépendante de son activité de dégradation de la coiffe des ARNm. De plus, dans l'optique d'identifier les membres du complexe de dégradation, une analyse par spectrométrie de masse a permis d'identifier plusieurs candidats potentiels. Une analyse préliminaire de l'un de ces candidats a permis de démontrer que sa perte de fonction entraîne l'apparition de phénotype associé à une diminution de l'activité de la voie des microARNs et affecte le niveau de certains microARNs. Cette protéine, PPM-2, est une phosphatase et pourrait affecter le statut de phosphorylation d'une protéine importante pour la stabilité ou la dégradation des microARNs. En conclusion, DCS-1 fait partie d'un complexe de dégradation des microARNs avec la protéine XRN-1. L'identification de ce nouveau complexe de dégradation permet de mieux comprendre les mécanismes responsables du contrôle de ces ARNs. Une meilleure connaissance des mécanismes régulant la production et la stabilité des microARNs pourrait mener au développement de nouvelles avenues thérapeutiques.In all metazoans, microRNAs play a critical role in the regulation of genes implicated in cell proliferation and differentiation. These small non-coding RNAs form a silencing complex called miRISC and alter protein synthesis upon binding mRNA untranslated regions (UTRs). miRNAs are transcribed by RNA Pol II as a long transcript call the pri-miRNA. The pri-miRNA will go through two steps of cleavage to form the mature miRNA. This mature miRNA is then loaded onto an Argonaute protein to form the effector complex; the miRISC. Each step of miRNA biogenesis is tightly regulated. Recently, miRNA production and stability have been shown to be an important step in this pathway. Several proteins, such as p53, can modulate microRNA biogenesis and many other proteins are implicated in miRNA stabilization and degradation. A tight control of these regulatory RNA is essential since miRNA misregulation is associated with several diseases. Here we identified the ortholog of human decapping enzyme DcpS (DCS-1) as an important regulator of miRNA level in C. elegans by forming a degradation complex with XRN-1, idependantly of its catalytic activity. In C. elegans, the loss of dcs-1 affects the level of several microRNAs leading to a misregulation of their mRNA targets. Biochemical analysis, support that DCS-1 contributes to degradation of unbound microRNA, which is dependent on the 5' to 3' exonuclease XRN-1. In order to better understand the regulation of miRNAs, we sought to identify other members of this complex. An initial study of proteins identified by mass spectrometry revealed that the loss of ppm-2 induces several developmental defects associated with the loss of miRNAs. As PPM-2 is a phosphatase, our results suggest that it could affect the stability of the degradation complex by targeting one of its components or the miRNA loading on the Argonaute protein. In conclusion, our data support that DCS-1 is part of a degradation complex. Importantly, this study identified the first modulators of microRNA degradation in animals and proteins forming this complex are conserved in human suggesting that they could also be implicated in microRNA degradation in higher organisms. Since microRNA are misregulated in many human diseases, identification of factors modulating their stability could lead to new therapeutic approaches

    Identification d'interacteurs moléculaires et génétiques des argonautes impliqués dans la voie des microARN chez C. Elegans

    Get PDF
    Chez les eucaryotes, les microARN sont de courts ARN non codants régulant les gènes essentiels pour le développement et la différenciation cellulaire. Parmi les facteurs cellulaires clés de cette voie métabolique, on retrouve les RNAses de type III Drosha et Dicer, ainsi que les protéines Argonautes ALG-1 et ALG-2 chez C. elegans. Dans le but de mieux caractériser l’implication des protéines Argonautes dans la voie des microARN, nous avons utilisé deux approches différentes. Premièrement, nous avons étudié la liaison de la protéine Argonaute ALG-1 aux microARN chez C. elegans en fonction du stade développemental, et ce par analyse par micropuce des microARN associés avec ALG-1. Cette étude nous a permis de remarquer que ALG-1 lie la majorité des microARN, mais non la totalité, et ce, de façon très importante aux stades développementaux tardifs. Deuxièmement, nous nous sommes intéressés à l’identification d’interacteurs génétiques d’alg-2. Nous avons donc réalisé un criblage génétique basé sur la létalité synthétique avec le gène alg-2. Ainsi, lorsque le gène synthétique létal est muté simultanément avec alg-2, tel qu’observé avec alg-1, la double lésion induit la mort de l’animal. De ce criblage, nous avons isolé 11 mutants, classés en 5 groupes de complémentation. Par l’utilisation de techniques de cartographie génétique, nous avons localisé la mutation chez le candidat sla-1 sur le chromosome V, entre les positions génétiques de -12.7 et -3.65.In eukaryotes, microRNAs are small non-coding RNAs which have the role of regulating genes essential for development and cellular differentiation. Beside the RNAse III family members (Drosha and Dicer) and the Argonaute proteins ALG-1 and ALG-2 in C. elegans, essential components of this gene regulation pathway are still not uncovered. In order to characterize the implication of Argonaute proteins ALG-1 and ALG-2 in microRNA pathway, we used two approaches. First, we studied the interaction between microRNA and ALG-1 during worm development by microarray analysis of microRNA associated to ALG-1. From this analysis, we observed that the majority, but not the totality, of microRNA are associated to ALG-1, mostly at early developmental stages. Secondly, to identify new components of microRNA pathway, we conducted a genetic screen to identify new interactors of alg-2. Our screen is based on the synthetic lethality feature of alg-2 and alg-1 genes. In absence of both genes, the animal can not survive. With this synthetic lethal screen, we want to identify new genes that work in synergy with alg-2, like alg-1, interacting in the same genetic pathway. The worms have been mutagenized and 11 mutants, classified in 5 complementation groups, have been collected. By using various mapping techniques, we localized the mutation on mutant sla-1(qbc1) on chromosome V, between the genetic positions of -12.7 and -3.65

    Identification de partenaires potentiels de la protéine ALG-1 : découverte de nouveau joueurs dans la voie des microARNs

    Get PDF
    Les miARNs, de courts ARNs non codant de 19 à 22 nucleotides, responsablent de la répression traductionnelle, d'approximativement 30 % des ARNm codant. Ils agissent par appariement de base sur des régions situées en 3'UTR des ARNm ciblés. Pour ce faire, les protéines argonautes s'associent aux miARNs et forment le complexe effecteur miRISC (microRNA-Induced Silencing Complex). Les mécanismes d'action de ce complexe ne sont pas bien compris et certains autres facteurs inconnus pourraient avoir un rôle important. Nous avons identifié, par criblage double hybride, plusieurs interacteurs de la protéine ALG-1, une argonaute impliquée dans la voie des miARNs chez C. elegans. Nous avons aussi mis en évidence un groupe de proteases homologues aux cathepsines humaines. Pour évaluer l'implication des cathepsines dans la voie des miARNs, nous avons utilisé un essai luciférase nous permettant d'apprécier l'effet de l'inhibition de ces proteases sur la traduction d'un ARNm réprimé par un miARN

    Participation de l'activité endonucléasique des protéines argonautes ALG-1 et ALG-2 dans la maturation des miARN chez C. Elegans

    Get PDF
    Au sein de l'ensemble des protéines Argonautes codées par les génomes des organismes métazoaires, certains membres de cette famille de protéines ont conservé des acides aminés importants pour l'activité endonucléasique. La signification fonctionnelle de ces résidus (composés des résidus DDH), pour les Argonautes spécifiques des miARN chez les animaux, est encore inconnue puisque le ciblage des ARNm par les miARN ne provoque pas de clivage site spécifique comme c'est le cas pour les siARN. In vitro, nous avons mis en évidence, chez le nematode C. elegans, que les protéines Argonautes spécifiques aux miARN, ALG-1 et ALG-2, conservant ce motif, possèdent une activité de clivage similaire à celle impliquée dans la voie des si ARN. Nous démontrons également que les protéines Argonautes ALG-1 et ALG-2 ont la capacité de lier et d'utiliser comme substrats différents duplexes de courts ARN, similaires aux duplexes de miARN produits par l'enzyme DCR-1. Les Argonautes ALG-1 et ALG-2 sont capables de coupure endonucléolytique sur ces duplexes, lorsque le degré de complémentarité entre les deux brins le permet, et de séparer les deux brins d'un duplex de courts ARN contenant des mésappariements. In vivo, l'activité endonucléasique de ALG-1 ou ALG-2 est essentielle pour la voie des miARN, et la perte de cette activité conduit à une accumulation des précurseurs de miARN tronqués et une altération de la formation de miRISC fonctionnel. Prises dans leur ensemble, nos données indiquent que l'activité endonucléasique des protéines Argonaute ALG-1 ou ALG-2 contribue à la maturation des miARN chez le nematode C. elegans

    Étude de la fonction antivirale de protéines Argonautes

    Get PDF
    Chez les plantes, le mécanisme de l’ARN interférence régule l'expression des gènes par l'action des protéines Dicer-like (DCL) et Argonaute (AGO). De plus, l’ARN interférence fonctionne aussi comme un mécanisme de défense antiviral en ciblant l'ARN double brin dérivé du virus. La plante modèle, Arabidopsis thaliana, code pour 10 protéines AGO avec des fonctions spécialisées. Une fonction antivirale a été identifiée pour certaines d’entre elles contre différents virus. Néanmoins, mise en part AGO2, l’implication des autres AGOs dans la défense antivirale contre les Potexvirus n’est pas totalement élucider. Au cours de mes travaux, j’ai démontré, à l’aide d’essais fonctionnels, que toutes les protéines AGOs possèdent la capacité intrinsèque de reconnaître et cibler l’ARN viral lorsque cet ARN n’est pas protégé à l’intérieur du complexe de réplication viral. Des essais génétiques ont permis de démontrer que la protéine AGO5 d’Arabidopsis contribue, conjointement avec AGO2, à l’immunité antivirale de cette plante contre PVX sauvage capable de former des complexes de réplication. De façon encore plus importante, nous démontrons que toutes les protéines AGO d’Arabidopsis possèdent la capacité intrinsèque de reconnaître et cibler l’ARN viral lorsque cet ARN n’est ni protégé par l’action d’un VSR ou par un complexe de réplication viral intact suggérant que la formation de ces complexes permet de protéger les ARN viraux de la machinerie antivirale de l’hôte. De façon intéressante, nous démontrons que bien qu’AGO2 et AGO5 possèdent une activité antivirale contre PlAMV, un potexvirus, la répression de ce dernier chez Arabidopsis dépend majoritairement de la protéine AGO4. L’étude de la variabilité de la séquence codante d’AGO2 chez différentes accessions d’Arabidopsis thaliana m’a permis d’identifier deux régions, dans la protéine AGO2, importantes pour l’activité antivirale de cette protéine et qui ont été soumises à la sélection naturelle. La variabilité génétique retrouvée dans ces deux régions joue un rôle dans la détermination de la gamme d’hôte pour les virus végétaux. Ce genre de rôle n’a jamais été décrit pour le mécanisme de l’ARN interférence

    Une nouvelle classe de granules ARN induits par irradiation des cellules en culture aux ultra-violets?

    Get PDF
    Plusieurs types de granules ARN sont observables dans toutes les cellules. Certains correspondent à des structures où la régulation post-transcriptionnelle est effectuée; parmi ceux-ci on retrouve les granules de stress (GS) et les "processing bodies" (PB). Les GS sont des structures ribonucléoprotéiques cytoplasmiques formées suite à un stress cellulaire et dans lesquels les ARNm sont remisés pour y être transitoirement réprimés et protégés en attendant de meilleures conditions physiologiques. Les PB sont aussi des granules cytoplasmiques ribonucléoprotéiques formés entre autre des composants de la machinerie de dégradation et de la surveillance de l'ARN. De nombreuses études citent l'apparition des GS suite à l'irradiation aux UV. Cependant, cette observation n'a pas été validée. Nous avons donc cherché à caractériser les granules induits par les UV en suivant le comportement de FMRP, une protéine de liaison à l'ARN présente dans les GS. Dans cette étude, nous avons montré que les UV induisent la formation de granules cytoplasmiques qui n'ont ni la même taille, ni la même cinétique d'apparition et de disparition, ni la même composition des GS. Nous avons aussi noté l'absence des protéines de la petite sous-unité ribosomale normalement présentes dans les GS. Nous avons montré également que les cellules irradiées peuvent reprendre certaines fonctions physiologiques. Nous proposons donc l'hypothèse qu'il existerait une nouvelle classe de granules ARN induits par les UV dans lesquels seront accumulés les ARN potentiellement endommagés, ceci serait un nouveau mécanisme de régulation post-tanscriptionnelle

    Étude de l'impact des microARNs sur la carcinogenèse des cancers colorectaux instables sur les séquences répétées microsatellites du génome

    Get PDF
    La progression tumorale MSI (Microsatellite Instable) est un processus multi-étapes résultant de mutations générées par un processus d'instabilité génétique qui affecte en majorité les motifs répétés en tandem de l'ADN (microsatellites). Ces mutations contribuent à l'oncogenèse lorsqu'elles perturbent la fonction d'oncogènes ou de gènes suppresseurs de tumeurs. Le trait phénotypique MSI est consécutif à l'inactivation du système de réparation des mésappariements de l'ADN (système MMR). Dans ce travail, je me suis intéressé au rôle des microARNs dans l'oncogenèse MSI. Les microARNs régulent l'expression de nombreux gènes pouvant avoir un rôle clé dans le cancer. J'ai donc fait l'hypothèse d'un rôle de ces microARNs lors des différentes étapes du processus tumorigénique MSI. Tout d'abord nous avons mis en évidence une surexpression du miR-155 (ciblant les principales protéines MMR) au niveau de la muqueuse colique non transformée des malades atteints d'une Maladie Inflammatoire Chronique Intestinale, qui pourrait constituer un évènement pré-tumoral favorisant l'émergence de clones MMR-déficients (notion d'effet de champs). Dans une deuxième partie, nous avons pu identifier la première mutation somatique touchant un microARN. Il s'agit du miR-3613 dont la répétition microsatellite est entièrement localisée dans le miR mature. L'instabilité au niveau de ce miR conduit à des changements de séquence à l'extrémité 3' du miR (notion d'IsomiRs). Les isomiRs produits ont un répertoire de cibles qui pour certaines sont communes à la forme sauvage et pour d'autres spécifiques à chacun des variants.MSI tumor progression (Microsatellite Instability) is depicted as a multistage process that results from mutations generated by a process of genetic instability affecting mostly DNA tandem repeats (known as microsatellites). These mutations contribute to tumorigenesis when they disrupt the function of oncogenes or tumor suppressor genes. As a phenotypic trait, MSI is the consequence of DNA mismatch repair inactivation (MMR). This work focused on the role microRNAs might play in MSI tumorigenesis. MicroRNAs regulate the expression of numerous genes and are deregulated in cancer. I have hypothesized a role of theses microRNAs during the various stages of the MSI tumorigenic process, choosing colorectal cancers (CRC) as a working model. First we demonstrated that overexpression of miR-155 (targeting core MMR proteins) in the non-transformed colonic mucosa of patients with Inflammatory Bowel Disease, might constitute a pre-tumoral event promoting the emergence of MMR-deficient clones (a concept known as ?field effect?). In a second part, we were able to identify the first somatic mutation affecting a mature microRNA sequence. A DNA microsatellite repeat is indeed fully embedded within the mature sequence of miR-3613. Instability at this DNA repeat leads to sequence modifications at the 3?end of miR-3613-5p (IsomiRs). IsomiRs display a signature among which some mRNA targets are common to the wild form, while others are specific to each variant.PARIS-JUSSIEU-Bib.électronique (751059901) / SudocSudocFranceF

    Identification d'écotypes sensibles d'Arabidopsis thaliana aux viroïdes et caractérisation génique

    Get PDF
    Les viroïdes sont des pathogènes très méconnus et découverts récemment en comparaison aux bactéries, champignons ou virus. Ce sont des molécules d’ARN simple brin circulaire, possédant une structure secondaire très complexe et ne codant pour aucune protéine. Ils peuvent se répliquer soit dans le noyau soit dans les chloroplastes des cellules dépendant de leur famille en suivant un mécanisme de réplication en cercle roulant. Les viroïdes sont responsables de maladies ayant des impacts économiques importants sur plusieurs cultures vivrières telles que la tomate, la pomme de terre ou chez des cultures d’arbres fruitiers. Cependant, la recherche du ou des mécanismes moléculaires rentrant en jeu lors d’une infection avec un viroïde se heurte à un manque de plante modèle. Cet hôte doit avoir un génome connu, facile à étudier en laboratoire et ayant une variabilité génétique vis-à-vis de la susceptibilité face à un pathogène. En effet, le meilleur candidat serait Arabidopsis thaliana bien que n’ayant jamais été décrite comme pouvant permettre la réplication systémique de viroïdes lors d’une infection. Cependant, plusieurs études ont démontré que des écotypes différents d’A. thaliana ne se comportaient pas tous de la même façon lors d’une infection virale. Nous avons donc émis l’hypothèse que de même que les virus, une variation naturelle de la sensibilité aux viroïdes peut exister chez A. thaliana. À cette fin, nous avons infecté de nombreux écotypes avec trois viroïdes (PSTVd, HSVd et CLVd), puis cherché des symptômes d’infection ou détecté la présence de viroïdes par plusieurs techniques. Ceci a permis d’identifier plusieurs écotypes d’intérêt dans la recherche d’un modèle d’étude des viroïdes. D’autres expériences chez des lignées transgéniques de Nicotiana benthamiana et Solanum lycopersicum ont mis en évidence l’importance du gène codant pour la protéine AGO2 et peut-être le rôle de la protéine RDR1. Cette étude montre donc la mise en place d’un modèle d’étude des viroïdes chez A. thaliana ainsi que les premières pistes pour un ou des gènes conférant une résistance ou sensibilité aux viroïdes dépendamment de l’allèle ou de l’espèce d’origine de ce gène

    On the function and genetic interactions of the Caenorhabditis elegans genes alg-1 and alg-2

    Get PDF
    La voie des microARNs est un mécanisme post-transcriptionnel de régulation génique qui contrôle divers aspects développementaux et physiologiques chez de nombreux eucaryotes supérieurs. Afin de mieux comprendre les rôles et modes d’actions des microARNs, nous avons entrepris l'exploration des interactions génétiques de cette voie chez le nématode \textit{Caenorhabditis elegans}. Nous nous sommes ainsi concentrés sur les gènes codant pour les protéines Argonautes ALG-1 et ALG-2, qui sont les principaux constituants effecteurs de cette voie. Premièrement, nous avons caractérisé la relation entre ces deux paralogues, en étudiant respectivement leur expression spatio-temporelle, leur association avec des microARNs, ainsi que les phénotypes associés à leur perte de fonction. Nous avons ainsi pu définir des caractéristiques communes et spécifiques pour chacune de ces deux protéines Argonautes et décrire de manière précise leurs rôles essentiels lors du développement embryonnaire. En effet, nous avons démontré que l'absence d'expression zygotique des protéines ALG-1/2 provoque un arrêt du processus morphogénétique lors de l'allongement des embryons et un défaut dans les structures de fixation épidermique-musculaires. Deuxièmement, nous avons realisé un criblage génétique dans le but d'identifier des nouveaux partenaires des protéines Argonautes ALG-1/2. Nous avons découvert le gène codant pour la protéine VPS-52, qui est un composant du complexe GARP (\textit{Golgi Associated Retrograde Protein}). La caractérisation de ce gène nous a permis de démontrer que VPS-52 interagit génétiquement avec le gène \textit{alg-1} et se comporte comme un modulateur positif de l'activité de certains miARNs impliqués dans le développement larvaire. Les mutants de \textit{vps-52} aggravent les défauts des cellules souches épidermales observés dans les mutants de \textit{alg-1} et du microRNA \textit{mir-48}. Ils augment également la létalité du mutant \textit{let-7(n2853)} et ce dépendement de sa cible. Ces augmentations phénotypiques sont liées à une baisse des niveaux des microARNs miR-48, miR-241 et des protéines GW182. Cette étude nous amène donc à proposer que l'activité des microARNs peut être contrôlée en partie par un mécanisme de transport rétrograde dépendant du complexe GARP.The microRNA pathway is a post-transcriptional gene regulatory system that controls multiple developmental and physiological processes in many eukaryotes. We have undertaken the exploration of the genetic interactions of this pathway in the nematode \textit{Caenorhabditis elegans}, with the goal of unveiling processes controlled by microRNAs and the mechanisms of microRNA action. We focused on the genetic interactions of the \textit{alg-1} and \textit{alg-2} genes, that encode the microRNA-specific Argonaute proteins, key effector constituents of this pathway. In the first place, we characterized the relationship between these two argonaute paralogs, with respect to their spatio-temporal expression, association to microRNAs, and loss-of-function phenotypes. Thus, we defined shared and gene-specific features of these Argonautes and defined in detail their essential role during embryonic development. The absence of zygotic \textit{alg-1} and \textit{alg-2} expression causes arrest during the morphogenetic process of elongation with defects in the epidermal-muscle attachment structures. Addressing another aspect, we sought to elucidate novel genetic interactors of these argonautes using a forward genetics approach. We identified \textit{vps-52}, a component of the GARP (Golgi Associated Retrograde Protein) complex, as a genetic interactor of the \textit{alg-1} gene and established that, through its GARP complex function, it effects a positive modulatory role on miRNA activity. Mutants of \textit{vps-52} exacerbate the seam cell defects in the loss-of-function alleles of \textit{alg-1} and the \textit{let-7} miRNA family member \textit{mir-48} and enhance the lethality of the \textit{let-7(n2853)} hypomorph in a target dependent manner. These phenotypic enhancements related to decreased levels of the \textit{let-7} family microRNAs (miR-48 and miR-241) and the worm GW182 protein. Furthermore, the positive effect of \textit{vps-52} on microRNA activity seems to be conserved in mammalian cells, where VPS52 co-fractionates with miRISC components. Our analyses allow us to propose that VPS-52 as part of the GARP complex participates in membrane-related processes of the miRNA pathway, which facilitate miRNA activity and operate at the effector miRISC level
    • …
    corecore