995 research outputs found

    ViotSOC: Controlling Access to Dynamically Virtualized IoT Services using Service Object Capability

    Get PDF
    Virtualization of Internet of Things(IoT) is a concept of dynamically building customized high-level IoT services which rely on the real time data streams from low-level physical IoT sensors. Security in IoT virtualization is challenging, because with the growing number of available (building block) services, the number of personalizable virtual services grows exponentially. This paper proposes Service Object Capability(SOC) ticket system, a decentralized access control mechanism between servers and clients to effi- ciently authenticate and authorize each other without using public key cryptography. SOC supports decentralized partial delegation of capabilities specified in each server/- client ticket. Unlike PKI certificates, SOC’s authentication time and handshake packet overhead stays constant regardless of each capability’s delegation hop distance from the root delegator. The paper compares SOC’s security bene- fits with Kerberos and the experimental results show SOC’s authentication incurs significantly less time packet overhead compared against those from other mechanisms based on RSA-PKI and ECC-PKI algorithms. SOC is as secure as, and more efficient and suitable for IoT environments, than existing PKIs and Kerberos

    slimIoT: Scalable Lightweight Attestation Protocol For the Internet of Things

    Full text link
    The Internet of Things (IoT) is increasingly intertwined with critical industrial processes, yet contemporary IoT devices offer limited security features, creating a large new attack surface. Remote attestation is a well-known technique to detect cyber threats by remotely verifying the internal state of a networked embedded device through a trusted entity. Multi-device attestation has received little attention although current single-device approaches show limited scalability in IoT applications. Though recent work has yielded some proposals for scalable attestation, several aspects remain unexplored, and thus more research is required. This paper presents slimIoT, a scalable lightweight attestation protocol that is suitable for all IoT devices. slimIoT depends on an efficient broadcast authentication scheme along with symmetric key cryptography. It is resilient against a strong adversary with physical access to the IoT device. Our protocol is informative in the sense that it identifies the precise status of every device in the network. We implement and evaluate slimIoT considering many factors. On the one hand, our evaluation results show a low overhead in terms of memory footprint and runtime. On the other hand, simulations demonstrate that slimIoT is scalable, robust and highly efficient to be used in static and dynamic networks consisting of thousands of heterogenous IoT devices.Comment: This paper has been accepted at the 2018 IEEE Conference on Dependable and Secure Computing (DSC

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    An Innovative Strategy Based on Secure Element for Cyber–Physical Authentication in Safety-Critical Manufacturing Supply Chain

    Get PDF
    This research has been founded by the European Union’s Horizon 2020 Research and Innovation program under grant agreement No. 871518, a project named, A COmprehensive cyber-intelligence framework for resilient coLLABorative manufacturing Systems, COLLABS [55].The accurate tracking of every production step and related outcome in a supply chain is a stringent requirement in safety-critical sectors such as civil aviation. In such a framework, trusted traceability and accountability can be reliably and securely managed by means of blockchain-based solutions. Unfortunately, blockchain cannot guarantee the provenance and accuracy of the stored information. To overcome such a limitation, this paper proposes a secure solution to strongly rely on the tracking information of the physical assets in the supply chain. The proposed solution exploits Hardware Security Modules (HSMs) to provide required cryptographic primitives through a Near-Field Communication (NFC) connection. In our approach, each transfer of the assets is authenticated, verified, and recorded in the blockchain through the HSM. Transaction entries are signed, thus providing a guarantee of ownership and authenticity. The proposed infrastructure has been subject of an exhaustive security analysis and proved resilient against counterfeiting attempts, stakeholder repudiations, and misleading information.Horizon 2020 Framework Programme 871518 H202
    • …
    corecore