38 research outputs found

    Proportionally Fair Clustering Revisited

    Get PDF

    Proportional Representation in Metric Spaces and Low-Distortion Committee Selection

    Full text link
    We introduce a novel definition for a small set R of k points being "representative" of a larger set in a metric space. Given a set V (e.g., documents or voters) to represent, and a set C of possible representatives, our criterion requires that for any subset S comprising a theta fraction of V, the average distance of S to their best theta*k points in R should not be more than a factor gamma compared to their average distance to the best theta*k points among all of C. This definition is a strengthening of proportional fairness and core fairness, but - different from those notions - requires that large cohesive clusters be represented proportionally to their size. Since there are instances for which - unless gamma is polynomially large - no solutions exist, we study this notion in a resource augmentation framework, implicitly stating the constraints for a set R of size k as though its size were only k/alpha, for alpha > 1. Furthermore, motivated by the application to elections, we mostly focus on the "ordinal" model, where the algorithm does not learn the actual distances; instead, it learns only for each point v in V and each candidate pairs c, c' which of c, c' is closer to v. Our main result is that the Expanding Approvals Rule (EAR) of Aziz and Lee is (alpha, gamma) representative with gamma <= 1 + 6.71 * (alpha)/(alpha-1). Our results lead to three notable byproducts. First, we show that the EAR achieves constant proportional fairness in the ordinal model, giving the first positive result on metric proportional fairness with ordinal information. Second, we show that for the core fairness objective, the EAR achieves the same asymptotic tradeoff between resource augmentation and approximation as the recent results of Li et al., which used full knowledge of the metric. Finally, our results imply a very simple single-winner voting rule with metric distortion at most 44.Comment: 24 pages, Accepted to AAAI 2

    Whither Fair Clustering?

    Full text link
    Within the relatively busy area of fair machine learning that has been dominated by classification fairness research, fairness in clustering has started to see some recent attention. In this position paper, we assess the existing work in fair clustering and observe that there are several directions that are yet to be explored, and postulate that the state-of-the-art in fair clustering has been quite parochial in outlook. We posit that widening the normative principles to target for, characterizing shortfalls where the target cannot be achieved fully, and making use of knowledge of downstream processes can significantly widen the scope of research in fair clustering research. At a time when clustering and unsupervised learning are being increasingly used to make and influence decisions that matter significantly to human lives, we believe that widening the ambit of fair clustering is of immense significance.Comment: Accepted at the AI for Social Good Workshop, Harvard, July 20-21, 202

    Proportionally Representative Clustering

    Full text link
    In recent years, there has been a surge in effort to formalize notions of fairness in machine learning. We focus on clustering -- one of the fundamental tasks in unsupervised machine learning. We propose a new axiom ``proportional representation fairness'' (PRF) that is designed for clustering problems where the selection of centroids reflects the distribution of data points and how tightly they are clustered together. Our fairness concept is not satisfied by existing fair clustering algorithms. We design efficient algorithms to achieve PRF both for unconstrained and discrete clustering problems. Our algorithm for the unconstrained setting is also the first known polynomial-time approximation algorithm for the well-studied Proportional Fairness (PF) axiom (Chen, Fain, Lyu, and Munagala, ICML, 2019). Our algorithm for the discrete setting also matches the best known approximation factor for PF.Comment: Revised version includes a new author (Jeremy Vollen) and new results: Our algorithm for the unconstrained setting is also the first known polynomial-time approximation algorithm for the well-studied Proportional Fairness (PF) axiom (Chen, Fain, Lyu, and Munagala, ICML, 2019). Our algorithm for the discrete setting also matches the best known approximation factor for P

    Approximation Algorithms for Fair Range Clustering

    Full text link
    This paper studies the fair range clustering problem in which the data points are from different demographic groups and the goal is to pick kk centers with the minimum clustering cost such that each group is at least minimally represented in the centers set and no group dominates the centers set. More precisely, given a set of nn points in a metric space (P,d)(P,d) where each point belongs to one of the β„“\ell different demographics (i.e., P=P1⊎P2βŠŽβ‹―βŠŽPβ„“P = P_1 \uplus P_2 \uplus \cdots \uplus P_\ell) and a set of β„“\ell intervals [Ξ±1,Ξ²1],⋯ ,[Ξ±β„“,Ξ²β„“][\alpha_1, \beta_1], \cdots, [\alpha_\ell, \beta_\ell] on desired number of centers from each group, the goal is to pick a set of kk centers CC with minimum β„“p\ell_p-clustering cost (i.e., (βˆ‘v∈Pd(v,C)p)1/p(\sum_{v\in P} d(v,C)^p)^{1/p}) such that for each group iβˆˆβ„“i\in \ell, ∣C∩Pi∣∈[Ξ±i,Ξ²i]|C\cap P_i| \in [\alpha_i, \beta_i]. In particular, the fair range β„“p\ell_p-clustering captures fair range kk-center, kk-median and kk-means as its special cases. In this work, we provide efficient constant factor approximation algorithms for fair range β„“p\ell_p-clustering for all values of p∈[1,∞)p\in [1,\infty).Comment: ICML 202

    Proportional Fairness in Clustering: A Social Choice Perspective

    Full text link
    We study the proportional clustering problem of Chen et al. [ICML'19] and relate it to the area of multiwinner voting in computational social choice. We show that any clustering satisfying a weak proportionality notion of Brill and Peters [EC'23] simultaneously obtains the best known approximations to the proportional fairness notion of Chen et al. [ICML'19], but also to individual fairness [Jung et al., FORC'20] and the "core" [Li et al. ICML'21]. In fact, we show that any approximation to proportional fairness is also an approximation to individual fairness and vice versa. Finally, we also study stronger notions of proportional representation, in which deviations do not only happen to single, but multiple candidate centers, and show that stronger proportionality notions of Brill and Peters [EC'23] imply approximations to these stronger guarantees
    corecore