15,015 research outputs found

    Cake Division with Minimal Cuts: Envy-Free Procedures for 3 Person, 4 Persons, and Beyond

    Get PDF
    The minimal number of parallel cuts required to divide a cake into n pieces is n-1. A new 3-person procedure, requiring 2 parallel cuts, is given that produces an envy- free division, whereby each person thinks he or she receives at least a tied- for- largest piece. An extension of this procedure leads to a 4-person division, us ing 3 parallel cuts, that makes at most one player envious. Finally, a 4-person envy-free procedure is given, but it requires up to 5 parallel cuts, and some pieces may be disconnected. All these procedures improve on extant procedures by using fewer moving knives, making fewer people envious, or using fewer cuts. While the 4-person, 5-cut procedure is complex, endowing people with more information about others' preferences, or allowing them to do things beyond stopping moving knives, may yield simpler procedures for making envy- free divisions with minimal cuts, which are known always to existFAIR DIVISION; CAKE CUTTING; ENVY-FREENESS; MAXIMIN

    Divide-and-conquer: A proportional, minimal-envy cake-cutting algorithm

    Get PDF
    We analyze a class of proportional cake-cutting algorithms that use a minimal number of cuts (n-1 if there are n players) to divide a cake that the players value along one dimension. While these algorithms may not produce an envy-free or efficient allocation--as these terms are used in the fair-division literature--one, divide-and-conquer (D&C), minimizes the maximum number of players that any single player can envy. It works by asking n ≥ 2 players successively to place marks on a cake--valued along a line--that divide it into equal halves (when n is even) or nearly equal halves (when n is odd), then halves of these halves, and so on. Among other properties, D&C ensures players of at least 1/n shares, as they each value the cake, if and only if they are truthful. However, D&C may not allow players to obtain proportional, connected pieces if they have unequal entitlements. Possible applications of D&C to land division are briefly discussed.mechanism design; fair division; divisible good; cake-cutting; divide-and-choose

    Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations

    Full text link
    Cake cutting is one of the most fundamental settings in fair division and mechanism design without money. In this paper, we consider different levels of three fundamental goals in cake cutting: fairness, Pareto optimality, and strategyproofness. In particular, we present robust versions of envy-freeness and proportionality that are not only stronger than their standard counter-parts but also have less information requirements. We then focus on cake cutting with piecewise constant valuations and present three desirable algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and non-wasteful. It relies on parametric network flows and recent generalizations of the probabilistic serial algorithm. For the subdomain of piecewise uniform valuations, we show that it is also group-strategyproof. Then, we show that there exists an algorithm (MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal. MEA is based on computing a market-based equilibrium via a convex program and relies on the results of Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm CSD and a way to implement it via randomization that satisfies strategyproofness in expectation, robust proportionality, and unanimity for piecewise constant valuations. For the case of two agents, it is robust envy-free, robust proportional, strategyproof, and polynomial-time. Many of our results extend to more general settings in cake cutting that allow for variable claims and initial endowments. We also show a few impossibility results to complement our algorithms.Comment: 39 page

    Two-person cake-cutting: the optimal number of cuts

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods.Cake-cutting; fair division; envy-freeness; adjusted winner; heterogeneous good

    Redividing the Cake

    Full text link
    A heterogeneous resource, such as a land-estate, is already divided among several agents in an unfair way. It should be re-divided among the agents in a way that balances fairness with ownership rights. We present re-division protocols that attain various trade-off points between fairness and ownership rights, in various settings differing in the geometric constraints on the allotments: (a) no geometric constraints; (b) connectivity --- the cake is a one-dimensional interval and each piece must be a contiguous interval; (c) rectangularity --- the cake is a two-dimensional rectangle or rectilinear polygon and the pieces should be rectangles; (d) convexity --- the cake is a two-dimensional convex polygon and the pieces should be convex. Our re-division protocols have implications on another problem: the price-of-fairness --- the loss of social welfare caused by fairness requirements. Each protocol implies an upper bound on the price-of-fairness with the respective geometric constraints.Comment: Extended IJCAI 2018 version. Previous name: "How to Re-Divide a Cake Fairly

    N-Person cake-cutting: there may be no perfect division

    Get PDF
    A cake is a metaphor for a heterogeneous, divisible good, such as land. A perfect division of cake is efficient (also called Pareto-optimal), envy-free, and equitable. We give an example of a cake in which it is impossible to divide it among three players such that these three properties are satisfied, however many cuts are made. It turns out that two of the three properties can be satisfied by a 3-cut and a 4-cut division, which raises the question of whether the 3-cut division, which is not efficient, or the 4-cut division, which is not envy-free, is more desirable (a 2-cut division can at best satisfy either envy-freeness or equitability but not both). We prove that no perfect division exists for an extension of the example for three or more players.Cake-cutting; fair division; efficiency; envy-freeness; equitability; heterogeneous good

    Two-person pie-cutting: The fairest cuts

    Get PDF
    Barbanel, Brams, and Stromquist (2009) asked whether there exists a two-person moving-knife procedure that yields an envy-free, undominated, and equitable allocation of a pie. We present two procedures: One yields an envy-free, almost undominated, and almost equitable allocation, whereas the second yields an allocation with the two “almosts” removed. The latter, however, requires broadening the definition of a “procedure," which raises philosophical, as opposed to mathematical, issues. An analogous approach for cakes fails because of problems in eliciting truthful preferences.mechanism design; fair division; divisible good; cake-cutting; pie-cutting

    Mind the Gap: Cake Cutting With Separation

    Full text link
    We study the problem of fairly allocating a divisible resource, also known as cake cutting, with an additional requirement that the shares that different agents receive should be sufficiently separated from one another. This captures, for example, constraints arising from social distancing guidelines. While it is sometimes impossible to allocate a proportional share to every agent under the separation requirement, we show that the well-known criterion of maximin share fairness can always be attained. We then establish several computational properties of maximin share fairness -- for instance, the maximin share of an agent cannot be computed exactly by any finite algorithm, but can be approximated with an arbitrarily small error. In addition, we consider the division of a pie (i.e., a circular cake) and show that an ordinal relaxation of maximin share fairness can be achieved. We also prove that an envy-free or equitable allocation that allocates the maximum amount of resource exists under separation.Comment: Appears in the 35th AAAI Conference on Artificial Intelligence (AAAI), 202
    corecore