14,235 research outputs found

    Surface-integral expressions for the multipole moments of post-Newtonian sources and the boosted Schwarzschild solution

    Full text link
    New expressions for the multipole moments of an isolated post-Newtonian source, in the form of surface integrals in the outer near-zone, are derived. As an application we compute the ``source'' quadrupole moment of a Schwarzschild solution boosted to uniform velocity, at the third post-Newtonian (3PN) order. We show that the consideration of this boosted Schwarzschild solution (BSS) is enough to uniquely determine one of the ambiguity parameters in the recent computation of the gravitational wave generation by compact binaries at 3PN order: zeta=-7/33. We argue that this value is the only one for which the Poincar\'e invariance of the 3PN wave generation formalism is realized. As a check, we confirm the value of zeta by a different method, based on the far-zone expansion of the BSS at fixed retarded time, and a calculation of the relevant non-linear multipole interactions in the external metric at the 3PN order.Comment: 30 pages, submitted to Classical and Quantum Gravit

    Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries

    Get PDF
    The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves. Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary's orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.Comment: 109 pages, 1 figure; this version is an update of the Living Review article originally published in 2002; available on-line at http://www.livingreviews.org

    Universal features of Lifshitz Green's functions from holography

    Get PDF
    We examine the behavior of the retarded Green's function in theories with Lifshitz scaling symmetry, both through dual gravitational models and a direct field theory approach. In contrast with the case of a relativistic CFT, where the Green's function is fixed (up to normalization) by symmetry, the generic Lifshitz Green's function can a priori depend on an arbitrary function G(ω^)\mathcal G(\hat\omega), where ω^=ω/kz\hat\omega=\omega/|\vec k|^z is the scale-invariant ratio of frequency to wavenumber, with dynamical exponent zz. Nevertheless, we demonstrate that the imaginary part of the retarded Green's function (i.e. the spectral function) of scalar operators is exponentially suppressed in a window of frequencies near zero. This behavior is universal in all Lifshitz theories without additional constraining symmetries. On the gravity side, this result is robust against higher derivative corrections, while on the field theory side we present two z=2z=2 examples where the exponential suppression arises from summing the perturbative expansion to infinite order.Comment: 32 pages, 4 figures, v2: reference added, v3: fixed bug in bibliograph

    Quantum Electrodynamics of qubits

    Full text link
    Systematic description of a spin one-half system endowed with magnetic moment or any other two-level system (qubit) interacting with the quantized electromagnetic field is developed. This description exploits a close analogy between a two-level system and the Dirac electron that comes to light when the two-level system is described within the formalism of second quantization in terms of fermionic creation and annihilation operators. The analogy enables one to introduce all the powerful tools of relativistic QED (albeit in a greatly simplified form). The Feynman diagrams and the propagators turn out to be very useful. In particular, the QED concept of the vacuum polarization finds its close counterpart in the photon scattering off a two level-system leading via the linear response theory to the general formulas for the atomic polarizability and the dynamic single spin susceptibility. To illustrate the usefulness of these methods, we calculate the polarizability and susceptibility up to the fourth order of perturbation theory. These {\em ab initio} calculations resolve some ambiguities concerning the sign prescription and the optical damping that arise in the phenomenological treatment. We also show that the methods used to study two-level systems (qubits) can be extended to many-level systems (qudits). As an example, we describe the interaction with the quantized electromagnetic field of an atom with four relevant states: one S state and three degenerate P states.Comment: 23 pages, 6 figure

    Half-integral conservative post-Newtonian approximations in the redshift factor of black hole binaries

    Full text link
    Recent perturbative self-force computations (Shah, Friedman & Whiting, submitted to Phys. Rev. {\bf D}, arXiv:1312.1952 [gr-qc]), both numerical and analytical, have determined that half-integral post-Newtonian terms arise in the conservative dynamics of black-hole binaries moving on exactly circular orbits. We look at the possible origin of these terms within the post-Newtonian approximation, find that they essentially originate from non-linear "tail-of-tail" integrals and show that, as demonstrated in the previous paper, their first occurrence is at the 5.5PN order. The post-Newtonian method we use is based on a multipolar-post-Minkowskian treatment of the field outside a general matter source, which is re-expanded in the near zone and extended inside the source thanks to a matching argument. Applying the formula obtained for generic sources to compact binaries, we obtain the redshift factor of circular black hole binaries (without spins) at 5.5PN order in the extreme mass ratio limit. Our result fully agrees with the determination of the 5.5PN coefficient by means of perturbative self-force computations reported in the previously cited paper.Comment: 18 pages, no figures, references updated and minor corrections include
    corecore