638 research outputs found

    Unbounded Scalable Hardware Verification.

    Full text link
    Model checking is a formal verification method that has been successfully applied to real-world hardware and software designs. Model checking tools, however, encounter the so-called state-explosion problem, since the size of the state spaces of such designs is exponential in the number of their state elements. In this thesis, we address this problem by exploiting the power of two complementary approaches: (a) counterexample-guided abstraction and refinement (CEGAR) of the design's datapath; and (b) the recently-introduced incremental induction algorithms for approximate reachability. These approaches are well-suited for the verification of control-centric properties in hardware designs consisting of wide datapaths and complex control logic. They also handle most complex design errors in typical hardware designs. Datapath abstraction prunes irrelevant bit-level details of datapath elements, thus greatly reducing the size of the state space that must be analyzed and allowing the verification to be focused on the control logic, where most errors originate. The induction-based approximate reachability algorithms offer the potential of significantly reducing the number of iterations needed to prove/disprove given properties by avoiding the implicit or explicit enumeration of reachable states. Our implementation of this verification framework, which we call the Averroes system, extends the approximate reachability algorithms at the bit level to first-order logic with equality and uninterpreted functions. To facilitate this extension, we formally define the solution space and state space of the abstract transition system produced by datapath abstraction. In addition, we develop an efficient way to represent sets of abstract solutions involving present- and next-states and a systematic way to project such solutions onto the space of just the present-state variables. To further increase the scalability of the Averroes verification system, we introduce the notion of structural abstraction, which extends datapath abstraction with two optimizations for better classification of state variables as either datapath or control, and with efficient memory abstraction techniques. We demonstrate the scalability of this approach by showing that Averroes significantly outperforms bit-level verification on a number of industrial benchmarks.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133375/1/suholee_1.pd

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Flexible Framework for the Automatic Generation of SBST Programs

    Get PDF
    Software-based self-test (SBST) techniques are used to test processors and processor cores against permanent faults introduced by the manufacturing process or to perform in-field test in safety-critical applications. However, the generation of an SBST program is usually associated with high costs as it requires significant manual effort of a skilled engineer with in-depth knowledge about the processor under test. In this paper, we propose an approach for the automatic generation of SBST programs. First, we detail an automatic test pattern generation (ATPG) framework for the generation of functional test sequences. Second, we describe the extension of this framework with the concept of a validity checker module (VCM), which allows the specification of constraints with regard to the generated sequences. Third, we use the VCM to express typical constraints that exist when SBST is adopted for in-field test. In our experimental results, we evaluate the proposed approach with a microprocessor without interlocked pipeline stages (MIPS)-like microprocessor. The results show that the proposed method is the first approach able to automatically generate SBST programs for both end-of-manufacturing and in-field test whose fault efficiency is superior to those produced by state-of-the-art manual approaches

    Proceedings of the 22nd Conference on Formal Methods in Computer-Aided Design – FMCAD 2022

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Learning Nonlinear Loop Invariants with Gated Continuous Logic Networks (Extended Version)

    Full text link
    Verifying real-world programs often requires inferring loop invariants with nonlinear constraints. This is especially true in programs that perform many numerical operations, such as control systems for avionics or industrial plants. Recently, data-driven methods for loop invariant inference have shown promise, especially on linear invariants. However, applying data-driven inference to nonlinear loop invariants is challenging due to the large numbers of and magnitudes of high-order terms, the potential for overfitting on a small number of samples, and the large space of possible inequality bounds. In this paper, we introduce a new neural architecture for general SMT learning, the Gated Continuous Logic Network (G-CLN), and apply it to nonlinear loop invariant learning. G-CLNs extend the Continuous Logic Network (CLN) architecture with gating units and dropout, which allow the model to robustly learn general invariants over large numbers of terms. To address overfitting that arises from finite program sampling, we introduce fractional sampling---a sound relaxation of loop semantics to continuous functions that facilitates unbounded sampling on real domain. We additionally design a new CLN activation function, the Piecewise Biased Quadratic Unit (PBQU), for naturally learning tight inequality bounds. We incorporate these methods into a nonlinear loop invariant inference system that can learn general nonlinear loop invariants. We evaluate our system on a benchmark of nonlinear loop invariants and show it solves 26 out of 27 problems, 3 more than prior work, with an average runtime of 53.3 seconds. We further demonstrate the generic learning ability of G-CLNs by solving all 124 problems in the linear Code2Inv benchmark. We also perform a quantitative stability evaluation and show G-CLNs have a convergence rate of 97.5%97.5\% on quadratic problems, a 39.2%39.2\% improvement over CLN models
    • …
    corecore