178 research outputs found

    Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

    Get PDF
    Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1f_1, f2f_2 and f3:F2k→{0,1}f_3: \mathbb{F}_2^k \to \{0, 1\} are said to be triangle free if there is no x,y∈F2kx, y \in \mathbb{F}_2^k such that f1(x)=f2(y)=f3(x+y)=1f_1(x) = f_2(y) = f_3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / \epsislon, where \epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1/Ï”)2.423(1 / \epsilon)^{2.423} for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1/Ï”)6.619(1 / \epsilon)^{6.619}. Interestingly, we prove this by way of a combinatorial construction called \emph{uniquely solvable puzzles} that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm

    Nondeterministic graph property testing

    Full text link
    A property of finite graphs is called nondeterministically testable if it has a "certificate" such that once the certificate is specified, its correctness can be verified by random local testing. In this paper we study certificates that consist of one or more unary and/or binary relations on the nodes, in the case of dense graphs. Using the theory of graph limits, we prove that nondeterministically testable properties are also deterministically testable.Comment: Version 2: 11 pages; we allow orientation in the certificate, describe new application

    Random local algorithms

    Full text link
    Consider the problem when we want to construct some structure on a bounded degree graph, e.g. an almost maximum matching, and we want to decide about each edge depending only on its constant radius neighbourhood. We show that the information about the local statistics of the graph does not help here. Namely, if there exists a random local algorithm which can use any local statistics about the graph, and produces an almost optimal structure, then the same can be achieved by a random local algorithm using no statistics.Comment: 9 page

    Testing Booleanity and the Uncertainty Principle

    Get PDF
    Let f:{-1,1}^n -> R be a real function on the hypercube, given by its discrete Fourier expansion, or, equivalently, represented as a multilinear polynomial. We say that it is Boolean if its image is in {-1,1}. We show that every function on the hypercube with a sparse Fourier expansion must either be Boolean or far from Boolean. In particular, we show that a multilinear polynomial with at most k terms must either be Boolean, or output values different than -1 or 1 for a fraction of at least 2/(k+2)^2 of its domain. It follows that given oracle access to f, together with the guarantee that its representation as a multilinear polynomial has at most k terms, one can test Booleanity using O(k^2) queries. We show an \Omega(k) queries lower bound for this problem. Our proof crucially uses Hirschman's entropic version of Heisenberg's uncertainty principle.Comment: 15 page

    Hypotheses testing on infinite random graphs

    Full text link
    Drawing on some recent results that provide the formalism necessary to definite stationarity for infinite random graphs, this paper initiates the study of statistical and learning questions pertaining to these objects. Specifically, a criterion for the existence of a consistent test for complex hypotheses is presented, generalizing the corresponding results on time series. As an application, it is shown how one can test that a tree has the Markov property, or, more generally, to estimate its memory
    • 

    corecore