335,384 research outputs found

    Chemical Hardness, Linear Response, and Pseudopotential Transferability

    Full text link
    We propose a systematic method of analyzing pseudopotential transferability based on linear-response properties of the free atom, including self-consistent chemical hardness and polarizability. Our calculation of hardness extends the approach of Teter\cite{teter} not only by including self-consistency, but also by generalizing to non-diagonal hardness matrices, thereby allowing us to test for transferability to non-spherically symmetric environments. We apply the method to study the transferability of norm-conserving pseudopotentials for a variety of elements in the Periodic Table. We find that the self-consistent corrections are frequently significant, and should not be neglected. We prove that the partial-core correction improves the pseudopotential hardness of alkali metals considerably. We propose a quantity to represent the average hardness error and calculate this quantity for many representative elements as a function of pseudopotential cutoff radii. We find that the atomic polarizabilities are usually well reproduced by the norm-conserving pseudopotentials. Our results provide useful guidelines for making optimal choices in the pseudopotential generation procedure.Comment: Revtex (preprint style, 33 pages) + 9 postscript figures A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#l

    The random geometry of equilibrium phases

    Full text link
    This is a (long) survey about applications of percolation theory in equilibrium statistical mechanics. The chapters are as follows: 1. Introduction 2. Equilibrium phases 3. Some models 4. Coupling and stochastic domination 5. Percolation 6. Random-cluster representations 7. Uniqueness and exponential mixing from non-percolation 8. Phase transition and percolation 9. Random interactions 10. Continuum modelsComment: 118 pages. Addresses: [email protected] http://www.mathematik.uni-muenchen.de/~georgii.html [email protected] http://www.math.chalmers.se/~olleh [email protected]

    Quantum Equilibrium and the Origin of Absolute Uncertainty

    Full text link
    The quantum formalism is a ``measurement'' formalism--a phenomenological formalism describing certain macroscopic regularities. We argue that it can be regarded, and best be understood, as arising from Bohmian mechanics, which is what emerges from Schr\"odinger's equation for a system of particles when we merely insist that ``particles'' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. We find that a Bohmian universe, though deterministic, evolves in such a manner that an {\it appearance} of randomness emerges, precisely as described by the quantum formalism and given, for example, by ``\rho=|\psis|^2.'' A crucial ingredient in our analysis of the origin of this randomness is the notion of the effective wave function of a subsystem, a notion of interest in its own right and of relevance to any discussion of quantum theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum theory simply evaporate.Comment: 75 pages. This paper was published a long time ago, but was never archived. We do so now because it is basic for our recent article quant-ph/0308038, which can in fact be regarded as an appendix of the earlier on

    Metastable States in Spin Glasses and Disordered Ferromagnets

    Full text link
    We study analytically M-spin-flip stable states in disordered short-ranged Ising models (spin glasses and ferromagnets) in all dimensions and for all M. Our approach is primarily dynamical and is based on the convergence of a zero-temperature dynamical process with flips of lattice animals up to size M and starting from a deep quench, to a metastable limit. The results (rigorous and nonrigorous, in infinite and finite volumes) concern many aspects of metastable states: their numbers, basins of attraction, energy densities, overlaps, remanent magnetizations and relations to thermodynamic states. For example, we show that their overlap distribution is a delta-function at zero. We also define a dynamics for M=infinity, which provides a potential tool for investigating ground state structure.Comment: 34 pages (LaTeX); to appear in Physical Review

    Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications

    Full text link
    We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28). Matches version for publication in MNRA

    Spontaneous symmetry breaking: exact results for a biased random walk model of an exclusion process

    Full text link
    It has been recently suggested that a totally asymmetric exclusion process with two species on an open chain could exhibit spontaneous symmetry breaking in some range of the parameters defining its dynamics. The symmetry breaking is manifested by the existence of a phase in which the densities of the two species are not equal. In order to provide a more rigorous basis to these observations we consider the limit of the process when the rate at which particles leave the system goes to zero. In this limit the process reduces to a biased random walk in the positive quarter plane, with specific boundary conditions. The stationary probability measure of the position of the walker in the plane is shown to be concentrated around two symmetrically located points, one on each axis, corresponding to the fact that the system is typically in one of the two states of broken symmetry in the exclusion process. We compute the average time for the walker to traverse the quarter plane from one axis to the other, which corresponds to the average time separating two flips between states of broken symmetry in the exclusion process. This time is shown to diverge exponentially with the size of the chain.Comment: 42 page
    • …
    corecore