28 research outputs found

    Data-Discriminants of Likelihood Equations

    Full text link
    Maximum likelihood estimation (MLE) is a fundamental computational problem in statistics. The problem is to maximize the likelihood function with respect to given data on a statistical model. An algebraic approach to this problem is to solve a very structured parameterized polynomial system called likelihood equations. For general choices of data, the number of complex solutions to the likelihood equations is finite and called the ML-degree of the model. The only solutions to the likelihood equations that are statistically meaningful are the real/positive solutions. However, the number of real/positive solutions is not characterized by the ML-degree. We use discriminants to classify data according to the number of real/positive solutions of the likelihood equations. We call these discriminants data-discriminants (DD). We develop a probabilistic algorithm for computing DDs. Experimental results show that, for the benchmarks we have tried, the probabilistic algorithm is more efficient than the standard elimination algorithm. Based on the computational results, we discuss the real root classification problem for the 3 by 3 symmetric matrix~model.Comment: 2 table

    Computing the Real Isolated Points of an Algebraic Hypersurface

    Full text link
    Let R\mathbb{R} be the field of real numbers. We consider the problem of computing the real isolated points of a real algebraic set in Rn\mathbb{R}^n given as the vanishing set of a polynomial system. This problem plays an important role for studying rigidity properties of mechanism in material designs. In this paper, we design an algorithm which solves this problem. It is based on the computations of critical points as well as roadmaps for answering connectivity queries in real algebraic sets. This leads to a probabilistic algorithm of complexity (nd)O(nlog⁥(n))(nd)^{O(n\log(n))} for computing the real isolated points of real algebraic hypersurfaces of degree dd. It allows us to solve in practice instances which are out of reach of the state-of-the-art.Comment: Conference paper ISSAC 202

    Extended abstract for: Solving Rupert’s problem algorithmically

    Get PDF
    International audienc

    A Direttissimo Algorithm for Equidimensional Decomposition

    Full text link
    We describe a recursive algorithm that decomposes an algebraic set into locally closed equidimensional sets, i.e. sets which each have irreducible components of the same dimension. At the core of this algorithm, we combine ideas from the theory of triangular sets, a.k.a. regular chains, with Gr\"obner bases to encode and work with locally closed algebraic sets. Equipped with this, our algorithm avoids projections of the algebraic sets that are decomposed and certain genericity assumptions frequently made when decomposing polynomial systems, such as assumptions about Noether position. This makes it produce fine decompositions on more structured systems where ensuring genericity assumptions often destroys the structure of the system at hand. Practical experiments demonstrate its efficiency compared to state-of-the-art implementations

    VariĂ©tĂ©s bipolaires et rĂ©solution d’une Ă©quation polynomiale rĂ©elle

    Get PDF
    In previous work we designed an efficient procedure that finds an algebraic sample point for each connected component of a smooth real complete intersection variety. This procedure exploits geometric properties of generic polar varieties and its complexity is intrinsic with respect to the problem. In the present paper we introduce a natural construction that allows to tackle the case of a non–smooth real hypersurface by means of a reduction to a smooth complete intersection.Nous avons dĂ©crit prĂ©cĂ©demment un algorithme efficace qui exhibe un point reprĂ©sentatif (algĂ©brique) par composante connexe d’une intersection complĂšte rĂ©elle lisse. Ce processus est basĂ© sur l’exploitation des propriĂ©tĂ©s gĂ©omĂ©triques des variĂ©tĂ©s polaires gĂ©nĂ©riques et sa complexitĂ© est intrinsĂšque au problĂšme. Nous introduisons ici une construction naturelle nous permettant de traiter le cas d’une hypersurface singuliĂšre par rĂ©duction Ă  une situation intersection complĂšte lisse

    Workspace, Joint space and Singularities of a family of Delta-Like Robot

    Get PDF
    International audienceThis paper presents the workspace, the joint space and the singularities of a family of delta-like parallel robots by using algebraic tools. The different functions of SIROPA library are introduced, which is used to induce an estimation about the complexity in representing the singularities in the workspace and the joint space. A Groebner based elimination is used to compute the singularities of the manipulator and a Cylindrical Algebraic Decomposition algorithm is used to study the workspace and the joint space. From these algebraic objects, we propose some certified three-dimensional plotting describing the shape of workspace and of the joint space which will help the engineers or researchers to decide the most suited configuration of the manipulator they should use for a given task. Also, the different parameters associated with the complexity of the serial and parallel singularities are tabulated, which further enhance the selection of the different configuration of the manipulator by comparing the complexity of the singularity equations

    On the complexity of computing real radicals of polynomial systems

    Get PDF
    International audienceLet f= (f1, ..., fs) be a sequence of polynomials in Q[X1,...,Xn] of maximal degree D and V⊂ Cn be the algebraic set defined by f and r be its dimension. The real radical re associated to f is the largest ideal which defines the real trace of V . When V is smooth, we show that re , has a finite set of generators with degrees bounded by V. Moreover, we present a probabilistic algorithm of complexity (snDn )O(1) to compute the minimal primes of re . When V is not smooth, we give a probabilistic algorithm of complexity sO(1) (nD)O(nr2r) to compute rational parametrizations for all irreducible components of the real algebraic set V ∩ Rn. Experiments are given to show the efficiency of our approaches
    corecore