9,671 research outputs found

    Inverse Uncertainty Quantification using the Modular Bayesian Approach based on Gaussian Process, Part 2: Application to TRACE

    Full text link
    Inverse Uncertainty Quantification (UQ) is a process to quantify the uncertainties in random input parameters while achieving consistency between code simulations and physical observations. In this paper, we performed inverse UQ using an improved modular Bayesian approach based on Gaussian Process (GP) for TRACE physical model parameters using the BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data. The model discrepancy is described with a GP emulator. Numerical tests have demonstrated that such treatment of model discrepancy can avoid over-fitting. Furthermore, we constructed a fast-running and accurate GP emulator to replace TRACE full model during Markov Chain Monte Carlo (MCMC) sampling. The computational cost was demonstrated to be reduced by several orders of magnitude. A sequential approach was also developed for efficient test source allocation (TSA) for inverse UQ and validation. This sequential TSA methodology first selects experimental tests for validation that has a full coverage of the test domain to avoid extrapolation of model discrepancy term when evaluated at input setting of tests for inverse UQ. Then it selects tests that tend to reside in the unfilled zones of the test domain for inverse UQ, so that one can extract the most information for posterior probability distributions of calibration parameters using only a relatively small number of tests. This research addresses the "lack of input uncertainty information" issue for TRACE physical input parameters, which was usually ignored or described using expert opinion or user self-assessment in previous work. The resulting posterior probability distributions of TRACE parameters can be used in future uncertainty, sensitivity and validation studies of TRACE code for nuclear reactor system design and safety analysis

    Conformally Mapped Polynomial Chaos Expansions for Maxwell's Source Problem with Random Input Data

    Full text link
    Generalized Polynomial Chaos (gPC) expansions are well established for forward uncertainty propagation in many application areas. Although the associated computational effort may be reduced in comparison to Monte Carlo techniques, for instance, further convergence acceleration may be important to tackle problems with high parametric sensitivities. In this work, we propose the use of conformal maps to construct a transformed gPC basis, in order to enhance the convergence order. The proposed basis still features orthogonality properties and hence, facilitates the computation of many statistical properties such as sensitivities and moments. The corresponding surrogate models are computed by pseudo-spectral projection using mapped quadrature rules, which leads to an improved cost accuracy ratio. We apply the methodology to Maxwell's source problem with random input data. In particular, numerical results for a parametric finite element model of an optical grating coupler are given

    Multifidelity Uncertainty Quantification of a Commercial Supersonic Transport

    Get PDF
    The objective of this work was to develop a multifidelity uncertainty quantification approach for efficient analysis of a commercial supersonic transport. An approach based on non-intrusive polynomial chaos was formulated in which a low-fidelity model could be corrected by any number of high-fidelity models. The formulation and methodology also allows for the addition of uncertainty sources not present in the lower fidelity models. To demonstrate the applicability of the multifidelity polynomial chaos approach, two model problems were explored. The first was supersonic airfoil with three levels of modeling fidelity, each capturing an additional level of physics. The second problem was a commercial supersonic transport. This model had three levels of fidelity that included two different modeling approaches and the addition of physics between the fidelity levels. Both problems illustrate the applicability and significant computational savings of the multifidelity polynomial chaos method

    Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario

    Full text link
    A variety of methods is available to quantify uncertainties arising with\-in the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain parameters is very rare in realistic applications. We discuss and compare four different methods tested for data-driven uncertainty quantification based on a benchmark scenario of carbon dioxide storage. In the benchmark, for which we provide data and code, carbon dioxide is injected into a saline aquifer modeled by the nonlinear capillarity-free fractional flow formulation for two incompressible fluid phases, namely carbon dioxide and brine. To cover different aspects of uncertainty quantification, we incorporate various sources of uncertainty such as uncertainty of boundary conditions, of conceptual model definitions and of material properties. We consider recent versions of the following non-intrusive and intrusive uncertainty quantification methods: arbitary polynomial chaos, spatially adaptive sparse grids, kernel-based greedy interpolation and hybrid stochastic Galerkin. The performance of each approach is demonstrated assessing expectation value and standard deviation of the carbon dioxide saturation against a reference statistic based on Monte Carlo sampling. We compare the convergence of all methods reporting on accuracy with respect to the number of model runs and resolution. Finally we offer suggestions about the methods' advantages and disadvantages that can guide the modeler for uncertainty quantification in carbon dioxide storage and beyond

    Bayesian quantification of thermodynamic uncertainties in dense gas flows

    Get PDF
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the thermodynamic behavior of so-called dense gas flows, – i.e. flows of gases characterized by high molecular weights and complex molecules, working in thermodynamic conditions close to the liquid-vapor saturation curve–, are calibrated by means of Bayesian inference from reference aerodynamic data for a dense gas flow over a wing section. Flow thermodynamic conditions are such that the gas thermodynamic behavior strongly deviates from that of a perfect gas. In the aim of assessing the proposed methodology, synthetic calibration data –specifically, wall pressure data– are generated by running the numerical solver with a more complex and accurate thermodynamic model. The statistical model used to build the likelihood function includes a model-form inadequacy term, accounting for the gap between the model output associated to the best-fit parameters, and the rue phenomenon. Results show that, for all of the relatively simple models under investigation, calibrations lead to informative posterior probability density distributions of the input parameters and improve the predictive distribution significantly. Nevertheless, calibrated parameters strongly differ from their expected physical values. The relationship between this behavior and model-form inadequacy is discussed.ANR-11-MONU-008-00
    • 

    corecore