29 research outputs found

    Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios

    Get PDF
    This paper presents and compares two candidate large-scale propagation path loss models, the alpha-beta-gamma (ABG) model and the close-in (CI) free space reference distance model, for the design of fifth generation (5G) wireless communication systems in urban micro- and macro-cellular scenarios. Comparisons are made using the data obtained from 20 propagation measurement campaigns or ray-tracing studies from 2 GHz to 73.5 GHz over distances ranging from 5 m to 1429 m. The results show that the one-parameter CI model has a very similar goodness of fit (i.e., the shadow fading standard deviation) in both line-of-sight and non-line-of-sight environments, while offering substantial simplicity and more stable behavior across frequencies and distances, as compared to the three-parameter ABG model. Additionally, the CI model needs only one very subtle and simple modification to the existing 3GPP floating-intercept path loss model (replacing a constant with a close-in free space reference value) in order to provide greater simulation accuracy, more simplicity, better repeatability across experiments, and higher stability across a vast range of frequencies.Comment: in 2016 IEEE 83rd Vehicular Technology Conference (VTC2016-Spring), May 2016, Nanjing, Chin

    Coverage, capacity and interference analysis for an aerial base station in different environments

    Get PDF
    With the advancing 5G technology of base stations mounted on aerial platforms, such as unmanned aerial vehicles, the issue of coverage area, capacity and inter-cell interference is assuming higher importance for the cellular networks. In this paper, we follow a deterministic approach to analyze these problems using the data obtained from a commercial software for wireless electromagnetic wave propagation. We analyze the above mentioned parameters by varying the threshold of the received power. Also, we find an optimal altitude and power consumption model for an aerial base station. Simulations were carried out in three generalized environments, Suburban, Urban and Urban High Rise, developed according to ITU-R parameters. To derive these results we used an air-to-ground channel model obtained from the analysis of simulation data

    HUMIDITY EFFECT TO 5G PERFORMANCES UNDER PALEMBANG CHANNEL MODEL AT 28 GHZ

    Get PDF
    The telecommunication has a tremendous improvement in terms of data rates and bandwidth requiring sufficient frequency allocation and wideband spectrum availability. The millimeter-wave frequency band is one of the solution to these requirements, however communications in this band is facing new challenges on the climate effect to the channel propagation  In this paper, we propose a 5G channel model considering the effect of humidity based on the characteristic of the natural environment of Palembang city. The channel model is represented by power levels and delay called a Power Delay Profile (PDP and is derived based on a series of computer simulations using parameters of nature in Palembang. The 5G channel model is important to further derive the outage performance to be used as the theoretical performance of 5G in Palembang since the the Shannon Channel Capacity Theorem is involved in the derivation. We conduct a series of computer simulations to evaluate the validity of the proposed channel model and its characteristics. We found that humidity affect to the performances, where high humidity makes the performances of outage and BER slightly worse, although the effect may be ignored for some applications. The results of this paper are expected to be the references for the development and implementation of 5G Networks especially at the mm-Wave band in Palembang. 

    Modelling impact of topography gradient on signal path loss along the road way for 5G

    Get PDF
    Prediction of outdoor path loss, PL, model is crucial for the design and planning of fifth generation (5G) wireless communication systems. Different propagation models have been proposed to approximate cellular network’s coverage for diverse surroundings including for along the road way setting. In Malaysia, Road ways are not entirely on flat terrain with several segments of the roads commonly experience topography elevation. This paper presents simulation studies on the impact of topography gradient towards PL for different millimeter wave frequency bands based on available outdoor PL models. Three outdoor PL models were compared, namely close-in (CI) free space reference distance model, floating intercept model (FI), as well as alpha-beta-gamma (ABG) model. Five millimeter frequency bands at 28, 32, 38, 46 and 73 GHz with different gradients and line-of-sight (LOS) scenarios were investigated in the simulation. PL computation using the selected models indicated that topography elevation along roadways may contribute to deviation of no more than 2 dB relative to computation for flat terrain. However, selection of model used may results in different precision in PL modeling

    A Study of Channel Model Parameters for Aerial Base Stations at 2.4 GHz in Different Environments

    Get PDF
    The 5th generation of cellular networks (5G) will provide high speed and high-availability wireless links for communication between mobile users. The usage of aerial platforms as base stations has been recently proposed to meet the above requirements, especially in densely-packed urban areas. To make an accurate prediction of the performance in such a communication system the availability of suitable channel models is a fundamental requirement. Here, we concentrate on a simple path loss and shadow fading channel model that is commonly used to describe the propagation between an aerial base station and a user on the ground. A commercial 3D ray-tracing simulator is used to extract the main parameters used in the model and the Line of Sight/Non Line of Sight probabilities as a function of the transmitter height and elevation angle. We consider three reference scenarios: Suburban, Urban and Urban High Rise generated according to ITU-R specifications. As a novel contribution, we also show simulation results for the spatial correlation of the received signal in the three considered scenarios
    corecore