110 research outputs found

    A permanent formula for the Jones polynomial

    Get PDF
    The permanent of a square matrix is defined in a way similar to the determinant, but without using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that can estimate general permanents. Given a planar diagram of a link L with nn crossings, we define a 7n by 7n matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum resources.Comment: To appear in Advances in Applied Mathematic

    Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials

    Full text link
    In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials C\mathcal C and show that if pCp\in \cal C and there is a disk DD centered at zero in the complex plane such that p(G)p(G) does not vanish on DD for all bounded degree graphs GG, then for each zz in the interior of DD there exists a deterministic polynomial-time approximation algorithm for evaluating p(G)p(G) at zz. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.Comment: 27 pages; some changes have been made based on referee comments. In particular a tiny error in Proposition 4.4 has been fixed. The introduction and concluding remarks have also been rewritten to incorporate the most recent developments. Accepted for publication in SIAM Journal on Computatio

    Exact Covers via Determinants

    Full text link
    Given a k-uniform hypergraph on n vertices, partitioned in k equal parts such that every hyperedge includes one vertex from each part, the k-dimensional matching problem asks whether there is a disjoint collection of the hyperedges which covers all vertices. We show it can be solved by a randomized polynomial space algorithm in time O*(2^(n(k-2)/k)). The O*() notation hides factors polynomial in n and k. When we drop the partition constraint and permit arbitrary hyperedges of cardinality k, we obtain the exact cover by k-sets problem. We show it can be solved by a randomized polynomial space algorithm in time O*(c_k^n), where c_3=1.496, c_4=1.642, c_5=1.721, and provide a general bound for larger k. Both results substantially improve on the previous best algorithms for these problems, especially for small k, and follow from the new observation that Lovasz' perfect matching detection via determinants (1979) admits an embedding in the recently proposed inclusion-exclusion counting scheme for set covers, despite its inability to count the perfect matchings

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    A Linear-Optical Proof that the Permanent is #P-Hard

    Get PDF
    One of the crown jewels of complexity theory is Valiant's 1979 theorem that computing the permanent of an n*n matrix is #P-hard. Here we show that, by using the model of linear-optical quantum computing---and in particular, a universality theorem due to Knill, Laflamme, and Milburn---one can give a different and arguably more intuitive proof of this theorem.Comment: 12 pages, 2 figures, to appear in Proceedings of the Royal Society A. doi: 10.1098/rspa.2011.023
    corecore