16,164 research outputs found

    Proof systems for effectively propositional logic

    Get PDF
    We consider proof systems for effectively propositional logic. First, we show that propositional resolution for effectively propositional logic may have exponentially longer refutations than resolution for this logic. This shows that methods based on ground instantiation may be weaker than non-ground methods. Second, we introduce a generalisation rule for effectively propositional logic and show that resolution for this logic may have exponentially longer proofs than resolution with generalisation. We also discuss some related questions, such as sort assignments for generalisation

    Effectively Polynomial Simulations

    Get PDF
    We introduce a more general notion of efficient simulation between proof systems, which we call effectively-p simulation. We argue that this notion is more natural from a complexity-theoretic point of view, and by revisiting standard concepts in this light we obtain some surprising new results. First, we give several examples where effectively-p simulations are possible between different propositional proof systems, but where p-simulations are impossible (sometimes under complexity assumptions). Secondly, we prove that the rather weak proof system G0 for quantified propositional logic (QBF) can effectively-p simulate any proof system for QBF. Thus our definition sheds new light on the comparative power of proof systems. We also give some evidence that with respect to Frege and Extended Frege systems, an effectively-p simulation may not be possible. Lastly, we prove new relationships between effectively-p simulations, automatizability, and the P versus NP question

    Scavenger 0.1: A Theorem Prover Based on Conflict Resolution

    Full text link
    This paper introduces Scavenger, the first theorem prover for pure first-order logic without equality based on the new conflict resolution calculus. Conflict resolution has a restricted resolution inference rule that resembles (a first-order generalization of) unit propagation as well as a rule for assuming decision literals and a rule for deriving new clauses by (a first-order generalization of) conflict-driven clause learning.Comment: Published at CADE 201

    The modal logic of Reverse Mathematics

    Full text link
    The implication relationship between subsystems in Reverse Mathematics has an underlying logic, which can be used to deduce certain new Reverse Mathematics results from existing ones in a routine way. We use techniques of modal logic to formalize the logic of Reverse Mathematics into a system that we name s-logic. We argue that s-logic captures precisely the "logical" content of the implication and nonimplication relations between subsystems in Reverse Mathematics. We present a sound, complete, decidable, and compact tableau-style deductive system for s-logic, and explore in detail two fragments that are particularly relevant to Reverse Mathematics practice and automated theorem proving of Reverse Mathematics results

    Mass problems and intuitionistic higher-order logic

    Full text link
    In this paper we study a model of intuitionistic higher-order logic which we call \emph{the Muchnik topos}. The Muchnik topos may be defined briefly as the category of sheaves of sets over the topological space consisting of the Turing degrees, where the Turing cones form a base for the topology. We note that our Muchnik topos interpretation of intuitionistic mathematics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility. We introduce a new sheaf representation of the intuitionistic real numbers, \emph{the Muchnik reals}, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik topos we obtain a \emph{choice principle} (∀x ∃y A(x,y))⇒∃w ∀x A(x,wx)(\forall x\,\exists y\,A(x,y))\Rightarrow\exists w\,\forall x\,A(x,wx) and a \emph{bounding principle} (∀x ∃y A(x,y))⇒∃z ∀x ∃y (y≤T(x,z)∧A(x,y))(\forall x\,\exists y\,A(x,y))\Rightarrow\exists z\,\forall x\,\exists y\,(y\le_{\mathrm{T}}(x,z)\land A(x,y)) where x,y,zx,y,z range over Muchnik reals, ww ranges over functions from Muchnik reals to Muchnik reals, and A(x,y)A(x,y) is a formula not containing ww or zz. For the convenience of the reader, we explain all of the essential background material on intuitionism, sheaf theory, intuitionistic higher-order logic, Turing degrees, mass problems, Muchnik degrees, and Kolmogorov's calculus of problems. We also provide an English translation of Muchnik's 1963 paper on Muchnik degrees.Comment: 44 page

    The Structure of Differential Invariants and Differential Cut Elimination

    Full text link
    The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics
    • …
    corecore