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Abstract. We consider proof systems for effectively propositional logic.
First, we show that propositional resolution for effectively propositional
logic may have exponentially longer refutations than resolution for this
logic. This shows that methods based on ground instantiation may be
weaker than non-ground methods. Second, we introduce a generalisation
rule for effectively propositional logic and show that resolution for this
logic may have exponentially longer proofs than resolution with general-
isation. We also discuss some related questions, such as sort assignments
for generalisation.

1 Introduction

Effectively propositional logic (in the sequel we call it simply EPR) is a fragment
of first-order logic which can be effectively translated into propositional logic.
Formulae in EPR are, essentially, those formulae in the Bernays-Schönfinkel
class. It has recently been shown that several real life applications such as
bounded model checking [11] and planning [12] can be naturally and succinctly
encoded as EPR formulae. Effectively propositional benchmarks in the TPTP
library [18] also include problems from diverse areas such as algebra, natural
language processing, verification and puzzles.

When skolemised, EPR formulae contain no function symbols and this have
a finite Herbrand Universe, which allows one to translate them to propositional
logic using grounding : substitutions of constants for variables of the formula.

Grounding and the subsequent use of SAT solvers remains one of the most
succesful approaches to checking the satisfiability of EPR formulae. The purpose
of this paper is to compare several proof systems for EPR formulae, including
those based on grounding and SAT. Although our results are formulated in terms
of proof lengths, which is not always the most interesting criterion in practice,
they give some insight on why proof systems for EPR can be more powerful than
propositional proof systems. We believe that the insight gained from our results
and their proofs may find their ways in practical proof systems for EPR formulae.
In particular, we propose a new inference rule, called generalisation, which allows
one to lift ground (propositional) reasoning to the non-propositional level.

Our first result is that on EPR formulae resolution can be exponentially
more efficient than any propositional proof system working on a set of ground
instances of EPR formulae. Although this is not surprising, and even perhaps
expected, we are not aware of any previous formal proof of this result in the
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literature. We prove this result by giving a family of formulae which have first-
order resolution refutations of quadratic size, but whose propositional refutations
are all exponential in size.

Our second result is that resolution with generalisation can have exponen-
tially shorter proofs than resolution. Moreover, we define variants of the general-
isation rule based on sort inference methods which allow one to generalise from
a smaller set of clauses. We then show that generalisation using sorts is sound.
We also show that some standard sort inference algorithms, such as the one im-
plemented in the Paradox model finder [3], are compatible with generalisation.

2 Preliminaries

A clause is called an EPR clause if it has no function symbols of arity > 0. That
is, EPR clauses may contain variables and constants but not function symbols.
In this paper we will consider only EPR clauses. An expression (for example, a
clause) is called ground if it contains no variables. An instance of a clause C is
any clause Cσ obtained from C by applying a substitution σ.

Given a set of clauses S, we denote by S∗ the set of all ground instances of
clauses in S:

S∗
def= {Sσ | Sσ is ground and Sσ contains only constants from S} .

As usual, if S contains no constant symbols, then an arbitrary constant is added
in order to compute S∗. We consider logic without equality, which is not a
real restriction for EPR formulae since equality can be axiomatised using EPR
formulae. Note that a collection S of ground EPR clauses can also be considered
as a collection of propositional clauses by considering every ground atom A
ocurriong in S as a distinct propositional variable.

To improve readability, we will sometimes write clauses as implications, for
example p→ q instead of ¬p ∨ q.

2.1 Propositional vs first-order resolution

We prove in this section that resolution on EPR formulae can be exponentially
more efficient than propositional proof systems using grounding. First, we should
explain what we mean by the latter. By a propositional proof system for EPR
clauses we mean any proof system that, given a set S of clauses, builds a subset of
S∗ and applies a propositional proof system to this subset. Note that if a propo-
sitional proof system finds an unsatisfiable subset of S∗, then S is unsatisfiable
too.

We will now proceed to show that there is a family of sets of clauses Si

with respective resolution refutations Γi, such that the shortest propositional
refutation of Si is exponentially larger than Γi.

Let i be a positive integer. Consider the language having two constant sym-
bols 0 and 1, and a single predicate symbol s of arity i. Denote by 0̄, 1̄, x̄, etc.



sequences of constants 0, 1 and variables, respectively, whose length will be clear
from the context. The set Si consists of the following: the clause

s(0̄) , (1)

the clause
¬s(1̄) , (2)

and i clauses of the form:

s(x̄, 0, 1̄)→ s(x̄, 1, 0̄) , (3)

where the length of 1̄ ranges from 0, . . . , i− 1. Note that the size of Si is O(i2).

Lemma 1. The shortest propositional refutation of Si has a size of O(2i).

Proof. Note that every ground atom in the language of Si is of the form s(b̄),
where b̄ is a sequence of bits of length i. We can consider this sequence of bits
as a non-negative integer between 0 and 2i − 1 written in binary notation. For
a number n such that 0 ≤ n < 2i let us denote by n the sequence of i bits
denoting this number. Using this notation we can observe that S∗i consists of
the following clauses: s(0), ¬s(2i − 1), and all clauses of the form s(n)→s(n + 1)
for n = 0, . . . , 2i − 1.

Moreover, it is not hard to argue that every proper subset of S∗i is satisfiable,
so every propositional refutation of Si should be at least as large as S∗i . It remains
to note that the number of literals in S∗i is O(2i). ut
Lemma 2. Si has a resolution refutation of the size O(i2).

Proof. Let us build, for every k = 1, . . . , i− 1 a resolution derivation Πk from
Si of the clause

s(x̄, 0̄)→ s(x̄, 1̄), (4)

where k is the length of 0̄. This derivation will be built by induction on k. When
k = 1, (4) is of the form (3). For k > 1, we will take the derivation Πk−1 and
add several clauses to it to obtain Πk. We know that Πk−1 derives a clause

s(x̄, y, 0̄)→ s(x̄, y, 1̄) . (5)

where the length of 0̄ is k. From this and (3) we derive by a resolution inference
the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 0̄) .

From this and (5) we derive by a resolution inference the clause

s(x̄, 0, 0̄)→ s(x̄, 1, 1̄) .

and we are done. It is easy to see that the number of clauses in Πk not ocurring
in S is 3(k − 1), so the size of Πk is O(i · k).

Note that Πi derives
s(0̄)→ s(1̄)

and has the size O(i2). From this clause, (1) and (2) we can derive the empty
clause in 2 steps, so there exists a resolution refutation of Si having the size
O(i2). ut



Lemmas 1 and 2 yield the following theorem

Theorem 1. There is a sequence of sets of clauses S1, S2, . . . of increasing size
such that each Si has a refutation of a size quadratic in i, while the shortest
propositional refutation of Si has a size exponential in i.

Interestingly, as the results of the recent CASC competition show [17], res-
olution has so far been found not very competitive on EPR formulae. In the
following section we introduce another inference rule, especially designed for
effectively propositional formulae and intended to complement the resolution
approach.

3 The generalisation inference rule

Suppose that S is a set of EPR clauses whose constants are in the set c1, . . . , cn.
Let A[x] be a quantifier-free formula with a free variable x written in the same
language as S. Let us note that the formula

∀x(A[c1] ∧ · · · ∧A[cn]→A[x]) (6)

is valid in all Herbrand models of S. This, and the fact that A[x] is quantifier-
free, implies that adding (6) to S does not change the set of Herbrand models.
This gives us an idea of a generalization rule: an inference rule that allows one to
derive A[x] from A[c1], . . . , A[cn]. We will introduce a more general form of this
rule inspired by grounding systems based on sort inference [see e.g. 16]. These
systems may derive that the set of instantiations for some variable in s may be
restricted to a subset of all constants. Likewise, we can make generalisation from
a subset of constants.

Let us give some definitions. We call a predicate position a pair (p, i) where
p is a predicate symbol and i is a positive integer less than or equal to the arity
of p. When we denote positions we will write p.i instead of (p, i). We call a sort
a set of constant symbols, and a sort assignment a function that maps each
predicate position to a sort. A ground formula F is said to be compatible with
a sort assignment A if for every atomic subformula p(t1, . . . , tn) of F , we have
ti ∈ A(p.i). For a quantifier-free formula F , denote by F |A the set of all ground
instances of F compatible with A.

Definition 1. Given a sort assignment A, the inference rule of generalisation
with respect to A is

C1 ∨ p(t̄1, c1, ū1) · · · Cn ∨ p(t̄n, cn, ūn)
C1σ ∨ · · · ∨ Cnσ ∨ p(t̄1, y, ū1)σ

GenA

where y is a fresh variable, the length of t̄i is k, A(p.k+1) = {c1, . . . , cn} and σ is
the most general simultaneous unifier of the set of tuples {(t̄1, ū1), . . . , (t̄n, ūn)}.



If both inference rules, resolution and generalization, are allowed then the
system is (trivially) complete; this follows since resolution alone is already com-
plete. The discussion in the beginning of this section also suggests that it is also
sound when the sort function always returns the set of all constants.

One of the first results that we want to show, is that when resolution is com-
bined with generalisation, then the obtained inference system is still, as resolu-
tion alone, refutationally sound and complete. For this we begin by introducing
the following set of clauses which will be useful to simulate generalisation using
only resolution.

Definition 2. Given a sort assignment A, we define the set of generalisation
clauses, denoted by JAK, as the set containing all the clauses of the form

p(x̄, c1, z̄) ∧ · · · ∧ p(x̄, cn, z̄)→ p(x̄, y, z̄) , (7)

where k is the length of x̄ and A(p.k + 1) = {c1, . . . , cn}.

Notice that all clauses in JAK|A are tautologies, since the variable y would
have to be mapped to a constant ci of its appropriate sort.

Lemma 3. If there is a refutation of a set of clauses S using resolution and
generalisation with respect to a sort assignment A, then there is a refutation of
S ∪ JAK using only resolution.

Proof. The result easily follows by noticing that generalisation inference steps
can be simulated by resolving the n clauses of the form Ci ∨ s(x̄, ci, z̄)σi with
the corresponding clause in the set JAK from Definition 2. ut

Let us now discuss sort inference functions that result in sort assignments
preserving satisfiability.

Definition 3. A sort inference function Ξ is a function that yields a sort as-
signment given a set of clauses as input. Moreover, we say that Ξ is

– valid if, for any set of clauses S, the sets S and S|A are equisatisfiable; and
– stable if, for any set of clauses S, Ξ(S ∪ JAK) = A.

where A = Ξ(S).

The first condition, validity, states that when checking the satisfiability of S
by using instantiation-based methods, the generation of ground instances can be
restricted to those which are compatible with A. The condition of stability asserts
that the sort inference procedure is not affected when the set of generalisation
clauses JAK is added to a formula.

The following theorem proves that resolution can be extended with general-
isation preserving soundness.

Theorem 2. Let S be a set of clauses, Ξ be a valid and stable sort inference
function, and A = Ξ(S). If there is a refutation of S using resolution and gen-
eralisation with respect to A, then there is a refutation of S using resolution
only.



Proof. We will first show that the set of clauses S is equisatisfiable with S∪ JAK.
Since the sort inference function is stable, we know that Ξ(S) = Ξ(S∪JAK) = A.
Moreover, since the sort inference is valid, the sets S ∪ JAK and (S ∪ JAK)|A =
S|A ∪ JAK|A are equisatisfiable. But recall that JAK|A contains only tautologies
and, therefore, S|A ∪ JAK|A and S|A are equisatisfiable. Finally, again by the
validity of the sort inference function, we get that S|A and S are equisatisfiable.

Now, to prove the theorem statement, suppose that there is a refutation of
S using resolution and generalisation with respect to A. Then, by Lemma 3 and
since resolution is sound, S ∪ JAK is unsatisfiable. But then, from the previous
paragraph, it follows that S is unsatisfiable and, since resolution is refutation
complete, there is a refutation of S using resolution only. ut

From this, our main result now follows as a simple corollary.

Corollary 1. An inference rule system based on resolution and generalisation,
with respect to a valid and stable sort inference function, is both refutationally
sound and complete.

Proof. Soundness follows by Theorem 1, while completeness is directly inherited
from the completeness of resolution. ut

From this result it follows that, any valid and stable sort inference function
is suitable to be combined with generalisation in order to produce a sound and
complete inference system. The question on how to obtain such kind of sort
inference functions, however, remains open. This is the matter of the following
section.

3.1 Sort inference for generalisation

In this section we will explore some possibilities in order to generate sort in-
formation that can be combined with the generalisation inference rule. A first
option, though not very interesting, is to assign the trivial sort assignment to all
sets of clauses.

Definition 4. Given an effectively propositional language with a domain D of
constant symbols, the trivial sort assignment is the function that maps every
predicate position to D.

That is, it uses the domain of the logic itself as the sort for all variables
and positions in predicates. This procedure is clearly stable since, irrelevant to
the particular set of input clauses, the trivial sort assignment is always used.
Moreover, by Herbrand’s theorem this procedure is also valid and therefore a
suitable candidate to be used together with generalisation.

In the following Section 3.2, we will see how even this simple approach can
already represent a significant advantage over using the resolution inference rule
alone. However, particularly on problems from applications, it is very likely that
more specialised sort inference functions are able to give even better results in
practise.



An example of a sort inference function is the method proposed by Claessen
and Sörensson [3] and implemented in Paradox in the context of grounding-
based model finding.

Algorithm 1 (Basic sort inference). Start with a sort assignment giving unre-
lated empty sorts to each predicate position.

Processing one clause at a time, and as a union-find algorithm: for each
variable in the clause, merge the sorts assigned to all predicate positions where
that variable occurs; and, for each constant symbol, add the constant symbol to
the sort assigned to the predicate position where it appears.

Finally, add a dummy constant symbol to any sort that still remained empty
at the end of this procedure.

It is not hard to argue, as it is done by Claessen and Sörensson [3], that
this sort inference function is valid –in the sense of our Definition 3– and that,
moreover, is not affected when adding the set of clauses JAK to S. So, from Theo-
rem 2, it follows that we already have a sort inference method that, without any
further modifications, can be directly used to empower generalisation inferences.

It is to be expected, that if one obtains a sort inference method by extend-
ing some available technique to restrict the number of generated instances in a
grounding approach, then the obtained method will most likely be valid. This
follows since such methods actually work by replacing the satisfiability testing
for an effectively propositional formula, to checking instead an equisatisfiable set
of propositional instances. This equisatisfiability is, precisely, what the property
of validity asks for.

Unfortunately, however, not any ground restriction method can be so easily
integrated with generalisation. Using the idea of positional linking, also called
structural constraints by Schulz [16] and implemented in eground, one can
easily define the following sort inference function.

Algorithm 2 (Positional sort inference). Given a set of clauses S compute, for
every signed predicate s.i, the set Ts.i as the set of all terms that appear in a
literal with a signed predicate s at position i, i.e. if s(t1, . . . , tn) appears in S
then ti ∈ Ts.i. Then let Cs.i = Ts.i if all terms in Ts.i are constants, and Cs.i = D
otherwise.

Now, for each predicate position p.i, the positional sort inference is defined as
the function that maps each such set S, to the sort assignment Ap.i = Cp.i∩C¬p.i.

This sort inference function is clearly also valid. It works by the observation
that literals which are not compatible with the generated sort assignment would
be pure, i.e. they only appear in one of the two possible phases, and so they can
be discarded. However, this sort inference function is not stable, as the following
example shows.

Example 1. Consider the following satisfiable set of clauses S:

p(a)
¬p(x) ∨ q(x)

¬q(b)



The positional sort would have Ap.1 = {a}, Aq.1 = {b}, and the restricted set
S|A is simply {p(a),¬q(b)}. Note that, however, adding the clause

¬p(a) ∨ p(x)

which is part of JAK, would cause Ap.1 = D = {a, b} —because now a variable
appears in p(x) on both positive and negative phases— making the sort inference
function unstable and rendering the set of clauses S ∪ JAK unsatisfiable.

In this section we have shown how a sort inference method, as proposed by
Claessen and Sörensson [3], can be used together with the generalisation inference
rule in order to make it more easily applicable in practice. In the following
we give, in the form of a theoretical result, some evidence on why combining
generalisation with resolution is likely to produce a powerful reasoning system.

3.2 Generalisation vs resolution

In this section, and in order to further motivate the use of the generalisation in-
ference rule in combination with resolution, we show a family of formulae which,
similar to the one given in Section 2.1, shows that refutations can become ex-
ponentially shorter when combining resolution with the generalisation inference
rule. For doing so we will show an example of a series of unsatisfiable sets of
clauses S1, . . . , Sn such that the length of shortest resolution refutation of Sn is
exponential in n, while using both generalisation and resolution it is possible to
find a refutation of size quadratic in n. In the following we will use xi to repre-
sent variables, bi and ci for constant symbols, as well as si and ti for arbitrary
terms.

Definition 5. Take a logic whose language has a set of constant symbols B =
{0, 1} and let n be a non-negative number. For every i, with 0 ≤ i ≤ n, there is
a pair of predicate symbols pi and qi both of arity i.

Now let Sn be the set of clauses that contains: the clause

p0 , (8)

2n clauses, two for every 0 ≤ i < n, of the form

pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 0) , (9)
pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, 1) ,

the clause
pn(x1, . . . , xn)→ qn(x1, . . . , xn) , (10)

n clauses, one for every 0 ≤ i < n, of the form

qi+1(0, xi, . . . , xn) ∧ qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) , (11)

where i = n− i + 1, and the clause

¬q0 . (12)



Moreover, we will assume that generalisation inferences are applied with respect
to the trivial sort assignment that simply maps every predicate position to the
domain set B = {0, 1}.

Intuitively, clauses of the form (9) encode the fact that if pi(b1, . . . , bi) is
true, then pn should be true for all n-bit strings with a prefix of b1, . . . , bi. A
dual of this is encoded by clauses of the form (11): if qi(bi, . . . , bn) is false, then
qn should be false for some n-bit string with a suffix of bi, . . . , bn.

From clauses (8) and (9) we get that pn(b1, . . . , bn) is true for all n-bit strings.
Then from (10) that qn(b1, . . . , bn) is also true for all n-bit strings and, therefore
from (11), the atom q0 should be true. But this causes a contradiction with (12),
so the set Sn is unsatisfiable.

Indices in variables and terms have been chosen to enforce the prefix and
suffix intuition of these predicate symbols. Formally, in the atoms pi(t1, . . . , ti)
and qi(ti, . . . , tn), we say that the position of the term ti is the i-th bit position.
Note that in all clauses of Sn, the variable xi only appears at the i-th bit position
of an atom.

Theorem 3. There is a refutation of Sn, using both generalisation and resolu-
tion inference rules, which is of size quadratic in n.

Proof. We start our refutation with the clause (8) which is the fact p0. Observe
now that it is possible to extend a proof of

pi(x1, . . . , xi) (13)

to a proof of
pi+1(x1, . . . , xi, xi+1) (14)

by adding a constant number of steps.
To do this, first apply a generalisation inference on the pair of clauses (9) to

obtain
pi(x1, . . . , xi)→ pi+1(x1, . . . , xi, xi+1) ,

and then resolve this with (13) to obtain (14).
After n iterations of this procedure we get a proof of pn(x1, . . . , xn) whose

length is linear in n. Now, resolve this with (10) to obtain qn(x1, . . . , xn). Observe
now that we can extend a proof of

qi+1(xi−1, xi, . . . , xn) (15)

to a proof of
qi(xi, . . . , xn) (16)

by adding a constant number of steps.
To do this, simply resolve (15) with (11) to obtain

qi+1(1, xi, . . . , xn)→ qi(xi, . . . , xn) ,

and again with (15) to finally obtain (16).



After n of such iterations we end with a proof of q0 which is also of length
linear in n. Finally resolving q0 with (12) we obtain a refutation of Sn. Since the
size of each clause in the refutation is also linear in n, the size of the refutation
is quadratic in n. ut

Our main theorem of this section states that, using resolution alone, even
the shortest refutation is of length at least exponential in n. The idea of the
proof is not very difficult, but proving some of the necessary lemmas gets rather
involved. We will therefore give first a sketch of the proof, followed by a couple of
lemmas without proofs, followed by a formal proof of the main theorem relying
on those lemmas. The missing proofs, as well as some other aditional details,
can be found in an appendix of the full version of this paper.3

Theorem 4. A resolution refutation of Sn has a length of, at least, 2n.

Proof (Sketch of proof). To prove that any refutation of Sn has at least an
exponential length, we introduce a function on sets of clauses that, in a way,
measures the accumulated progress achieved step by step on a refutation.

This work function, denoted by w, will map the set of clauses occurring
in a partial proof Γ to the set of n-bit strings which, intuitively, have already
been consumed while trying to build a refutation. This function should moreover
satisfy w(Sn) = ∅, while the work of any refutation Γ is w(Γ ) = Bn. In order
to prove the theorem statement it would then be enough to show that from one
step to the next in the refutation, the work done increases in, at most, a single
element. In other words all elements in Bn would have to be consumed one by
one, yielding a proof of exponential length. ut

In order to define such work function, first we identify the kind of clauses
that might appear in a refutation of Sn. We observe that, indeed, only two kinds
of clauses are possible (more details in the paper’s full version):

– type I are clauses, such as (8-10), of the form

[l1]→ h (17)

where the head h has a predicate symbol pj , with 0 ≤ j ≤ n, or qn.
– type II are clauses, such as (11-12), of the form

l1 ∧ · · · ∧ lm → h (18)

where the head h is either ⊥ or has a predicate symbol qi with i < n.
Moreover, we say that a literal li is active if its bit positions overlap with
those of h, and inactive otherwise.

It is easy to check that resolving together two clauses of type I will yield another
clause of type I, while resolving a clause of type II with one of either type will
also produce a clause of type II.
3 Available at: http://www.mpi-sws.mpg.de/∼jnavarro/papers.html



Definition 6 (Work function). For a clause of type II with head qi(ti, . . . , tn)
we first define the work of a literal l as follows:

w(l) =


Bn l = ⊥,

Bn−j × t̂j × · · · × t̂n l = qj(tj , . . . , tn),
t̂1 × · · · × t̂n l = pj(t1, . . . , tj) for an active l,
∅ if l is inactive.

where t̂ is the set of all ground instances of the term t. We also let wc(l) =
Bn \ w(l). The work of the clause C is then defined as

w(C) = wc(l1) ∩ · · · ∩ wc(lm) ∩ w(h) (19)

For clauses of type I we let w(C) = ∅. Finally, the work of a set of clauses is
the union of the work of each clause in the set.

From this definition it is not difficult to check that, indeed, w(Sn) = ∅;
while the work of the empty clause (which is of type II), and therefore of any
refutation of Sn, is Bn. A significant ammount of the proof details are actually
spent in showing that (1) non-ground clauses have an empty work, and (2) the
work function is invariant with respect to the application of substitutions. In the
paper’s full version we prove the following two lemmas.

Lemma 4. Let C be any clause in a refutation of Sn. If C is non-ground, then
the work w(C) = ∅.

Lemma 5. Let C be any clause in a refutation of Sn and let σ be a substitution.
It then follows that w(C) = w(Cσ).

The former lemma will allow us to quickly discard many resolution steps as
points where the work could increase in a refutation. The later allows us to more
easily analize the effect of the remaining inferences, since the substitution that
may be required in order to unify and resolve a pair of clauses will not affect
the work measure of each individual clause. Having these, we can now prove the
following lemma which is the core of the main result.

Lemma 6. Let C, C1, and C2 be clauses in a refutation of Sn such that C is
obtained by resolving another pair of clauses C1 and C2 with a unifier σ. It then
follows that δ = w(C) \ w({C1, C2}) has at most one element.

Proof. If C is either non-ground or of type I, then we know, respectively by
Lemma 4 and by definition, that w(C) = ∅ and the result is trivial. We threfore
assume that C is a ground clause of type II.

Suppose that C is the result of resolving two clauses of types I and II.

C1σ : [l′1]→ l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm → h

C : [l′1] ∧ l2 ∧ · · · ∧ lm → h



Take b̄ ∈ δ ⊆ w(C), in particular, b̄ ∈ wc(l2) ∩ · · · ∩ wc(lm) ∩ w(h). However,
since b̄ /∈ w(C2) and, by Lemma 5, b̄ /∈ w(C2σ), it must therefore be the case
that b̄ /∈ wc(l1) or, equivalently, b̄ ∈ w(l1). This actually shows that δ ⊆ w(l1).
Observe, however, that since l1 appears as the head of clause a clause of type I, its
predicate symbol is either pj or qn and, since moreover the predicate is ground,
w(l1) will contain at most a single element (c.f. Definition 6).

Suppose that otherwise C is the result of resolving two clauses of type II.

C1σ : l′1 ∧ · · · ∧ l′m′ → l1

C2σ : l1 ∧ l2 ∧ · · · ∧ lm → h

C : l′1 ∧ · · · ∧ l′m′ ∧ l2 ∧ · · · ∧ lm → h

Exactly as in the previous case we can prove for any b̄ ∈ δ that also b̄ ∈ w(l1).
Now, however, from b̄ ∈ w(C) we also get b̄ ∈ wc(l′1) ∩ · · · ∩ wc(l′m′) and, from
this, that b̄ ∈ w(C1σ) = w(C1), contradicting the hypothesis that b̄ /∈ w(C1).
The conclusion is that, in this case, δ = ∅. ut

Our main theorem now follows as a simple corollary of the previous result.

Corollary 2. A resolution refutation of Sn has a length of, at least, 2n.

Proof. Let Γ = C1, . . . , Cm be a refutation of Sn, i.e. Cm = ⊥. Now, for every
1 < i ≤ m let δi = w(C1, . . . , Ci) \ w(C1, . . . , Ci−1) be the work increment in
the proof that is provided by the clause Ci. If Ci is an hypothesis in Sn, then
by definition its work is empty and, therefore, δi = ∅. Suppose that, otherwise,
the clause Ci is the result of applying resolution among another pair of clauses
Cj and Ck with i > j and i > k; as a consequence of Lemma 6 we know that δi

contains, at most, one element.
Since all elements in w(Γ ) = Bn had to be incorporated one element at a

time, it therefore follows that the length of the proof, m, is at least 2n. ut

4 Related work

Although quite recent, there has been a significant interest of the automated
reasoning community on effectively propositional logic. The CADE ATP System
Competition, since its JC instalment in 2001, holds a division for EPR problems
[13]. Moreover, a number of theorem provers particularly geared towards this
class of formulae have also been developed. These include, for example, eground
by Schulz [16], Paradox by Claessen and Sörensson [3], Darwin by Fuchs [5],
and iProver by Korovin [8].

Systems such as eground and Paradox implement an instantiation ap-
proach where ground instances of the given input formula are generated and
then tests for satisfiability are run by a SAT solver. Several ideas have been then
proposed in order to limit the number of instances that have to be generated.
The work of Schulz [16] discusses and compares some of the early approaches,



while Claessen and Sörensson [3] introduce the notion of sort inference in the
context of MACE-style model finding..

In a closely related line of research, the notion of hyper-linking [9, 14] was
also proposed in order to restrict the kind of inferences that need to be per-
formed in instantiation based methods. Other related ideas can be found in the
work of Hooker et al. [7]. Alternatively, Ganzinger and Korovin [6] propose the
use of first-order reasoning (e.g. resolution) to drive the instantiation process;
while Baumgartner and Tinelli [1] try to avoid direct instantiation by lifting the
propositional DLL algorithm [4] to the first-order level.

Voronkov [20] proposed to use relational databade technology and equality
constraints for implementing resolution on EPR formulae and shows that set-at-
a-time resolution related operations, such as resolution and subsumption, can be
implemented using database operations, for example, joins. A similar observation
was later made by Tammet and Kadarpik [19].

Combinations of tableaux related techniques with propositional satisfiability
checking have also been proposed by researchers such as Billon [2], Letz and
Stenz [10].

5 Conclusion and Future Work

We proved several results showing potential of non-ground methods for proving
EPR formulae. First, we proved that resolution can have exponentially shorter
proofs than propositional procedures for EPR. Second, we proposed a generalisa-
tion rule and showed that resolution with generalisation can have exponentially
shorter proofs than resolution.

We find the generalisation rule especially appealing for practical theorem
proving. Implementation techniques and heuristics for applying this rule should
be developed. Further, it is interesting to investigate soundness of stronger ver-
sions of generalisation, both theoretically and practically. In practice, one can
try to use potentially unsound versions of this rule and then see if a refutation
obtained by a potentially unsound version can be made into a valid refutation.

A crucial step in the efficiency of the generalisation rule is to find new sort
inference techniques that restrict sorts as much as possible yet are still sound.
We show how some existing sort inference techniques, such as those developed
for grounding-based approaches, can be directly applied in this context; while
some others, particularly based on linking restrictions, cannot be used in a sound
way as easily.

Incidentally, the proofs of these two exponential gaps provide us with bench-
mark families that might be interesting to test with existing systems. We have
shown that, when reasoning with a particular inference system, some unsatisfi-
able problems have rather short refutations, but are existing implementations of
theorem provers able to find such short proofs? Or, which heuristics can we use
in order to find these shorter proofs with higher probability?

Further directions for future work include the research on techniques for
efficiently implementing and integrating the proposed generalisation inference



rule with other systems which already make use of resolution, such as iProver
[8] or Vampire [15]. Alternatively, it might also prove fruitful to investigate
possible extensions of this inference rule in order to make use of complete linking
information which can perhaps better describe the underlying structure of the
problem being solved.
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