5 research outputs found

    Modal Logics for Nominal Transition Systems

    Get PDF
    We define a general notion of transition system where states and action labels can be from arbitrary nominal sets, actions may bind names, and state predicates from an arbitrary logic define properties of states. A Hennessy-Milner logic for these systems is introduced, and proved adequate and expressively complete for bisimulation equivalence. A main technical novelty is the use of finitely supported infinite conjunctions. We show how to treat different bisimulation variants such as early, late, open and weak in a systematic way, explore the folklore theorem that state predicates can be replaced by actions, and make substantial comparisons with related work. The main definitions and theorems have been formalised in Nominal Isabelle

    Abstract Dependency Graphs for Model Verification

    Get PDF

    Probabilistic Semantics: Metric and Logical Character\ua8ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes

    Probabilistic Semantics: Metric and Logical Character¨ations for Nondeterministic Probabilistic Processes

    Get PDF
    In this thesis we focus on processes with nondeterminism and probability in the PTS model, and we propose novel techniques to study their semantics, in terms of both classic behavioral relations and the more recent behavioral metrics. Firstly, we propose a method for decomposing modal formulae in a probabilistic extension of the Hennessy-Milner logic. This decomposition method allows us to derive the compositional properties of probabilistic (bi)simulations. Then, we propose original notions of metrics measuring the disparities in the behavior of processes with respect to (decorated) trace and testing semantics. To capture the differences in the expressive power of the metrics we order them by the relation `makes processes further than'. Thus, we obtain the first spectrum of behavioral metrics on the PTS model. From this spectrum we derive an analogous one for the kernels of the metrics, ordered by the relation `makes strictly less identification than'. Finally, we introduce a novel technique for the logical characterization of both behavioral metrics and their kernels, based on the notions of mimicking formula and distance on formulae. This kind of characterization allows us to obtain the first example of a spectrum of distances on processes obtained directly from logics. Moreover, we show that the kernels of the metrics can be characterized by simply comparing the mimicking formulae of processes
    corecore