294 research outputs found

    Minimum saturated families of sets

    Get PDF
    We call a family F\mathcal{F} of subsets of [n][n] ss-saturated if it contains no ss pairwise disjoint sets, and moreover no set can be added to F\mathcal{F} while preserving this property (here [n]={1,…,n}[n] = \{1,\ldots,n\}). More than 40 years ago, Erd\H{o}s and Kleitman conjectured that an ss-saturated family of subsets of [n][n] has size at least (1−2−(s−1))2n(1 - 2^{-(s-1)})2^n. It is easy to show that every ss-saturated family has size at least 12⋅2n\frac{1}{2}\cdot 2^n, but, as was mentioned by Frankl and Tokushige, even obtaining a slightly better bound of (1/2+ε)2n(1/2 + \varepsilon)2^n, for some fixed ε>0\varepsilon > 0, seems difficult. In this note, we prove such a result, showing that every ss-saturated family of subsets of [n][n] has size at least (1−1/s)2n(1 - 1/s)2^n. This lower bound is a consequence of a multipartite version of the problem, in which we seek a lower bound on ∣F1∣+…+∣Fs∣|\mathcal{F}_1| + \ldots + |\mathcal{F}_s| where F1,…,Fs\mathcal{F}_1, \ldots, \mathcal{F}_s are families of subsets of [n][n], such that there are no ss pairwise disjoint sets, one from each family Fi\mathcal{F}_i, and furthermore no set can be added to any of the families while preserving this property. We show that ∣F1∣+…+∣Fs∣≥(s−1)⋅2n|\mathcal{F}_1| + \ldots + |\mathcal{F}_s| \ge (s-1)\cdot 2^n, which is tight e.g.\ by taking F1\mathcal{F}_1 to be empty, and letting the remaining families be the families of all subsets of [n][n].Comment: 8 page

    The Alexander-Orbach conjecture holds in high dimensions

    Full text link
    We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior has been established, namely when the dimension d is large enough or when d>6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes a conjecture of Alexander and Orbach. En route we calculate the one-arm exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica

    Two-dimensional volume-frozen percolation: exceptional scales

    Get PDF
    We study a percolation model on the square lattice, where clusters "freeze" (stop growing) as soon as their volume (i.e. the number of sites they contain) gets larger than N, the parameter of the model. A model where clusters freeze when they reach diameter at least N was studied in earlier papers. Using volume as a way to measure the size of a cluster - instead of diameter - leads, for large N, to a quite different behavior (contrary to what happens on the binary tree, where the volume model and the diameter model are "asymptotically the same"). In particular, we show the existence of a sequence of "exceptional" length scales.Comment: 20 pages, 2 figure

    Seven-dimensional forest fires

    Full text link
    We show that in high dimensional Bernoulli percolation, removing from a thin infinite cluster a much thinner infinite cluster leaves an infinite component. This observation has implications for the van den Berg-Brouwer forest fire process, also known as self-destructive percolation, for dimension high enough.Comment: 8 page

    A sharper threshold for bootstrap percolation in two dimensions

    Get PDF
    Two-dimensional bootstrap percolation is a cellular automaton in which sites become 'infected' by contact with two or more already infected nearest neighbors. We consider these dynamics, which can be interpreted as a monotone version of the Ising model, on an n x n square, with sites initially infected independently with probability p. The critical probability p_c is the smallest p for which the probability that the entire square is eventually infected exceeds 1/2. Holroyd determined the sharp first-order approximation: p_c \sim \pi^2/(18 log n) as n \to \infty. Here we sharpen this result, proving that the second term in the expansion is -(log n)^{-3/2+ o(1)}, and moreover determining it up to a poly(log log n)-factor. The exponent -3/2 corrects numerical predictions from the physics literature.Comment: 21 page
    • …
    corecore