10 research outputs found

    Proof Compression and NP Versus PSPACE II

    Get PDF
    We upgrade [3] to a complete proof of the conjecture NP = PSPACE that is known as one of the fundamental open problems in the mathematical theory of computational complexity; this proof is based on [2]. Since minimal propositional logic is known to be PSPACE complete, while PSPACE to include NP, it suffices to show that every valid purely implicational formula ρ has a proof whose weight (= total number of symbols) and time complexity of the provability involved are both polynomial in the weight of ρ. As is [3], we use proof theoretic approach. Recall that in [3] we considered any valid ρ in question that had (by the definition of validity) a “short” tree-like proof π in the Hudelmaier-style cutfree sequent calculus for minimal logic. The “shortness” means that the height of π and the total weight of different formulas occurring in it are both polynomial in the weight of ρ. However, the size (= total number of nodes), and hence also the weight, of π could be exponential in that of ρ. To overcome this trouble we embedded π into Prawitz’s proof system of natural deductions containing single formulas, instead of sequents. As in π, the height and the total weight of different formulas of the resulting tree-like natural deduction ∂1 were polynomial, although the size of ∂1 still could be exponential, in the weight of ρ. In our next, crucial move, ∂1 was deterministically compressed into a “small”, although multipremise, dag-like deduction ∂ whose horizontal levels contained only mutually different formulas, which made the whole weight polynomial in that of ρ. However, ∂ required a more complicated verification of the underlying provability of ρ. In this paper we present a nondeterministic compression of ∂ into a desired standard dag-like deduction ∂0 that deterministically proves ρ in time and space polynomial in the weight of ρ.2 Together with [3] this completes the proof of NP = PSPACE.Natural deductions are essential for our proof. Tree-to-dag horizontal compression of π merging equal sequents, instead of formulas, is (possible but) not sufficient, since the total number of different sequents in π might be exponential in the weight of ρ – even assuming that all formulas occurring in sequents are subformulas of ρ. On the other hand, we need Hudelmaier’s cutfree sequent calculus in order to control both the height and total weight of different formulas of the initial tree-like proof π, since standard Prawitz’s normalization although providing natural deductions with the subformula property does not preserve polynomial heights. It is not clear yet if we can omit references to π even in the proof of the weaker result NP = coNP

    Proof Compression and NP Versus PSPACE II: Addendum

    Get PDF
    In our previous work we proved the conjecture NP = PSPACE by advanced proof theoretic methods that combined Hudelmaier’s cut-free sequent calculus for minimal logic (HSC) with the horizontal compressing in the corresponding minimal Prawitz-style natural deduction (ND). In this Addendum we show how to prove a weaker result NP = coNP without referring to HSC. The underlying idea (due to the second author) is to omit full minimal logic and compress only “naive” normal tree-like ND refutations of the existence of Hamiltonian cycles in given non-Hamiltonian graphs, since the Hamiltonian graph problem in NPcomplete. Thus, loosely speaking, the proof of NP = coNP can be obtained by HSC-elimination from our proof of NP = PSPACE

    A simplified lower bound for implicational logic

    Full text link
    We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.Comment: 31 page

    On the horizontal compression of dag-derivations in minimal purely implicational logic

    Full text link
    In this report, we define (plain) Dag-like derivations in the purely implicational fragment of minimal logic M_{\imply}. Introduce the horizontal collapsing set of rules and the algorithm {\bf HC}. Explain why {\bf HC} can transform any polynomial height-bounded tree-like proof of a M_{\imply} tautology into a smaller dag-like proof. Sketch a proof that {\bf HC} preserves the soundness of any tree-like ND in M_{\imply} in its dag-like version after the horizontal collapsing application. We show some experimental results about applying the compression method to a class of (huge) propositional proofs and an example, with non-hamiltonian graphs, for qualitative analysis. The contributions include the comprehensive presentation of the set of horizontal compression (HC), the (sketch) of a proof that HC rules preserve soundness and the demonstration that the compressed dag-like proofs are polynomially upper-bounded when the submitted tree-like proof is height and foundation poly-bounded. Finally, in the appendix, we show an algorithm that verifies in polynomial time on the size of the dag-like proofs whether they are valid proofs of their conclusions.Comment: This is a comprehensive report with the set of rules and the algorithm for compressing Natural Deduction proofs in the purely implicational minimal logic.It reports experiments with implementation applied to a class of huge proofs. It has new references, new section 5 with subsec 5.1, and updated the acknowledgements. This report has a much more detailed proof of soundnes

    19th Brazilian Logic Conference: Book of Abstracts

    Get PDF
    This is the book of abstracts of the 19th Brazilian Logic Conferences. The Brazilian Logic Conferences (EBL) is one of the most traditional logic conferences in South America. Organized by the Brazilian Logic Society (SBL), its main goal is to promote the dissemination of research in logic in a broad sense. It has been occurring since 1979, congregating logicians of different fields — mostly philosophy, mathematics and computer science — and with different backgrounds — from undergraduate students to senior researchers. The meeting is an important moment for the Brazilian and South American logical community to join together and discuss recent developments of the field. The areas of logic covered in the conference spread over foundations and philosophy of science, analytic philosophy, philosophy and history of logic, mathematics, computer science, informatics, linguistics and artificial intelligence. Previous editions of the EBL have been a great success, attracting researchers from all over Latin America and elsewhere. The 19th edition of EBL takes place from May 6-10, 2019, in the beautiful city of João Pessoa, at the northeast coast of Brazil. It is conjointly organized by Federal University of Paraíba (UFPB), whose main campus is located in João Pessoa, Federal University of Campina Grande (UFCG), whose main campus is located in the nearby city of Campina Grande (the second-largest city in Paraíba state) and SBL. It is sponsored by UFPB, UFCG, the Brazilian Council for Scientific and Technological Development (CNPq) and the State Ministry of Education, Science and Technology of Paraíba. It takes place at Hotel Luxxor Nord Tambaú, privileged located right in front Tambaú beach, one of João Pessoa’s most famous beaches

    Proof Compression and NP Versus PSPACE

    No full text
    corecore