3 research outputs found

    Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis

    Get PDF
    Funding Information: This work was sponsored by GlaxoSmithKline Biologicals SA whereby the NOVA University Lisbon was engaged under an Agreement for R and D Services. All authors were involved in the conception and design of the study. PD’s lab performed the experiments/acquired the data. JR, GO, RO analyzed and interpreted the data. All authors were involved in drafting the manuscript or critically revising it for important intellectual content. All authors had full access to the data and approved the manuscript before it was submitted by the corresponding author. Publisher Copyright: © 2022, The Author(s).Flux balance analysis (FBA) is currently the standard method to compute metabolic fluxes in genome-scale networks. Several FBA extensions employing diverse objective functions and/or constraints have been published. Here we propose a hybrid semi-parametric FBA extension that combines mechanistic-level constraints (parametric) with empirical constraints (non-parametric) in the same linear program. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor experiments served to evaluate the method. The mechanistic constraints were deduced from a reduced CHO-K1 genome-scale network with 686 metabolites, 788 reactions and 210 degrees of freedom. The non-parametric constraints were obtained by principal component analysis of the flux dataset. The two types of constraints were integrated in the same linear program showing comparable computational cost to standard FBA. The hybrid FBA is shown to significantly improve the specific growth rate prediction under different constraints scenarios. A metabolically efficient cell growth feed targeting minimal byproducts accumulation was designed by hybrid FBA. It is concluded that integrating parametric and nonparametric constraints in the same linear program may be an efficient approach to reduce the solution space and to improve the predictive power of FBA methods when critical mechanistic information is missing.publishersversionpublishe

    Development of process control strategies exploiting knowledge from systems biology: application to MDCK suspension cells

    Get PDF
    Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities
    corecore