1,500 research outputs found

    Projection Convolutional Neural Networks for 1-bit CNNs via Discrete Back Propagation

    Full text link
    The advancement of deep convolutional neural networks (DCNNs) has driven significant improvement in the accuracy of recognition systems for many computer vision tasks. However, their practical applications are often restricted in resource-constrained environments. In this paper, we introduce projection convolutional neural networks (PCNNs) with a discrete back propagation via projection (DBPP) to improve the performance of binarized neural networks (BNNs). The contributions of our paper include: 1) for the first time, the projection function is exploited to efficiently solve the discrete back propagation problem, which leads to a new highly compressed CNNs (termed PCNNs); 2) by exploiting multiple projections, we learn a set of diverse quantized kernels that compress the full-precision kernels in a more efficient way than those proposed previously; 3) PCNNs achieve the best classification performance compared to other state-of-the-art BNNs on the ImageNet and CIFAR datasets

    Bayesian Optimized 1-Bit CNNs

    Full text link
    Deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in resource-limited environments, such as on embedded devices and smart phones. Researchers have realized that 1-bit CNNs can be one feasible solution to resolve the issue; however, they are baffled by the inferior performance compared to the full-precision DCNNs. In this paper, we propose a novel approach, called Bayesian optimized 1-bit CNNs (denoted as BONNs), taking the advantage of Bayesian learning, a well-established strategy for hard problems, to significantly improve the performance of extreme 1-bit CNNs. We incorporate the prior distributions of full-precision kernels and features into the Bayesian framework to construct 1-bit CNNs in an end-to-end manner, which have not been considered in any previous related methods. The Bayesian losses are achieved with a theoretical support to optimize the network simultaneously in both continuous and discrete spaces, aggregating different losses jointly to improve the model capacity. Extensive experiments on the ImageNet and CIFAR datasets show that BONNs achieve the best classification performance compared to state-of-the-art 1-bit CNNs
    • …
    corecore