3,813 research outputs found

    Progressive Shape-Distribution-Encoder for 3D Shape Retrieval

    Get PDF
    Since there are complex geometric variations with 3D shapes, extracting efficient 3D shape features is one of the most challenging tasks in shape matching and retrieval. In this paper, we propose a deep shape descriptor by learning shape distributions at different diffusion time via a progressive shape-distribution-encoder (PSDE). First, we develop a shape distribution representation with the kernel density estimator to characterize the intrinsic geometry structures of 3D shapes. Then, we propose to learn a deep shape feature through an unsupervised PSDE. Specially, the unsupervised PSDE aims at modeling the complex non-linear transform of the estimated shape distributions between consecutive diffusion time. In order to characterize the intrinsic structures of 3D shapes more efficiently, we stack multiple PSDEs to form a network structure. Finally, we concatenate all neurons in the middle hidden layers of the unsupervised PSDE network to form an unsupervised shape descriptor for retrieval. Furthermore, by imposing an additional constraint on the outputs of all hidden layers, we propose a supervised PSDE to form a supervised shape descriptor, where for each hidden layer the similarity between a pair of outputs from the same class is as small as possible and the similarity between a pair of outputs from different classes is as large as possible. The proposed method is evaluated on three benchmark 3D shape datasets with large geometric variations, i.e., McGill, SHREC’10 ShapeGoogle and SHREC’14 Human datasets, and the experimental results demonstrate the superiority of the proposed method to the existing approaches

    Visual Object Networks: Image Generation with Disentangled 3D Representation

    Full text link
    Recent progress in deep generative models has led to tremendous breakthroughs in image generation. However, while existing models can synthesize photorealistic images, they lack an understanding of our underlying 3D world. We present a new generative model, Visual Object Networks (VON), synthesizing natural images of objects with a disentangled 3D representation. Inspired by classic graphics rendering pipelines, we unravel our image formation process into three conditionally independent factors---shape, viewpoint, and texture---and present an end-to-end adversarial learning framework that jointly models 3D shapes and 2D images. Our model first learns to synthesize 3D shapes that are indistinguishable from real shapes. It then renders the object's 2.5D sketches (i.e., silhouette and depth map) from its shape under a sampled viewpoint. Finally, it learns to add realistic texture to these 2.5D sketches to generate natural images. The VON not only generates images that are more realistic than state-of-the-art 2D image synthesis methods, but also enables many 3D operations such as changing the viewpoint of a generated image, editing of shape and texture, linear interpolation in texture and shape space, and transferring appearance across different objects and viewpoints.Comment: NeurIPS 2018. Code: https://github.com/junyanz/VON Website: http://von.csail.mit.edu
    • …
    corecore