89,904 research outputs found

    Progressive Optimization in Action

    Get PDF

    DeepPR: Progressive Recovery for Interdependent VNFs with Deep Reinforcement Learning

    Get PDF
    The increasing reliance upon cloud services entails more flexible networks that are realized by virtualized network equipment and functions. When such advanced network systems face a massive failure by natural disasters or attacks, the recovery of the entire system may be conducted in a progressive way due to limited repair resources. The prioritization of network equipment in the recovery phase influences the interim computation and communication capability of systems, since the systems are operated under partial functionality. Hence, finding the best recovery order is a critical problem, which is further complicated by virtualization due to dependency among network nodes and layers. This paper deals with a progressive recovery problem under limited resources in networks with VNFs, where some dependent network layers exist. We prove the NP-hardness of the progressive recovery problem and approach the optimum solution by introducing DeepPR, a progressive recovery technique based on Deep Reinforcement Learning (Deep RL). Our simulation results indicate that DeepPR can achieve the near-optimal solutions in certain networks and is more robust to adversarial failures, compared to a baseline heuristic algorithm.Comment: Technical Report, 12 page

    Intra-Cluster Autonomous Coverage Optimization For Dense LTE-A Networks

    Full text link
    Self Organizing Networks (SONs) are considered as vital deployments towards upcoming dense cellular networks. From a mobile carrier point of view, continuous coverage optimization is critical for better user perceptions. The majority of SON contributions introduce novel algorithms that optimize specific performance metrics. However, they require extensive processing delays and advanced knowledge of network statistics that may not be available. In this work, a progressive Autonomous Coverage Optimization (ACO) method combined with adaptive cell dimensioning is proposed. The proposed method emphasizes the fact that the effective cell coverage is a variant on actual user distributions. ACO algorithm builds a generic Space-Time virtual coverage map per cell to detect coverage holes in addition to limited or extended coverage conditions. Progressive levels of optimization are followed to timely resolve coverage issues with maintaining optimization stability. Proposed ACO is verified under both simulations and practical deployment in a pilot cluster for a worldwide mobile carrier. Key Performance Indicators show that proposed ACO method significantly enhances system coverage and performance.Comment: conferenc

    Progressive Teacher-student Learning for Early Action Prediction

    Get PDF
    • …
    corecore