4,034 research outputs found

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    Simple Baselines for Interactive Video Retrieval with Questions and Answers

    Full text link
    To date, the majority of video retrieval systems have been optimized for a "single-shot" scenario in which the user submits a query in isolation, ignoring previous interactions with the system. Recently, there has been renewed interest in interactive systems to enhance retrieval, but existing approaches are complex and deliver limited gains in performance. In this work, we revisit this topic and propose several simple yet effective baselines for interactive video retrieval via question-answering. We employ a VideoQA model to simulate user interactions and show that this enables the productive study of the interactive retrieval task without access to ground truth dialogue data. Experiments on MSR-VTT, MSVD, and AVSD show that our framework using question-based interaction significantly improves the performance of text-based video retrieval systems.Comment: ICCV 2023, project page: https://github.com/kevinliang888/IVR-QA-baseline

    Simplified Video Surveillance Framework for Dynamic Object Detection under Challenging Environment

    Get PDF
    An effective video surveillance system is highly essential in order to ensure constructing better form of video analytics. Existing review of literatures pertaining to video analytics are found to directly implement algorithms on the top of the video file without much emphasis on following problems i.e. i) dynamic orientation of subject, ii)poor illumination condition, iii) identification and classification of subjects, and iv) faster response time. Therefore, the proposed system implements an analytical concept that uses depth-image of the video feed along with the original colored video feed to apply an algorithm for extracting significant information about the motion blob of the dynamic subjects. Implemented in MATLAB, the study outcome shows that it is capable of addressing all the above mentioned problems associated with existing research trends on video analytics by using a very simple and non-iterative process of implementation. The applicability of the proposed system in practical world is thereby proven

    A Comprehensive Survey on Deep-Learning-based Vehicle Re-Identification: Models, Data Sets and Challenges

    Full text link
    Vehicle re-identification (ReID) endeavors to associate vehicle images collected from a distributed network of cameras spanning diverse traffic environments. This task assumes paramount importance within the spectrum of vehicle-centric technologies, playing a pivotal role in deploying Intelligent Transportation Systems (ITS) and advancing smart city initiatives. Rapid advancements in deep learning have significantly propelled the evolution of vehicle ReID technologies in recent years. Consequently, undertaking a comprehensive survey of methodologies centered on deep learning for vehicle re-identification has become imperative and inescapable. This paper extensively explores deep learning techniques applied to vehicle ReID. It outlines the categorization of these methods, encompassing supervised and unsupervised approaches, delves into existing research within these categories, introduces datasets and evaluation criteria, and delineates forthcoming challenges and potential research directions. This comprehensive assessment examines the landscape of deep learning in vehicle ReID and establishes a foundation and starting point for future works. It aims to serve as a complete reference by highlighting challenges and emerging trends, fostering advancements and applications in vehicle ReID utilizing deep learning models
    • …
    corecore