74 research outputs found

    Simulation Of Vehicular Movement in VANET

    Get PDF
    In the recent years research in the field of vehicular ad-hoc network(VANET) is done extensively. VANET consist of large number of dynamically nodes which are vehicles over a area. Different types of technology and applications are being developed for the VANET . So this VANET technology and applications should be thoroughly checked before deployment in the real world environment. But to test technologies and applications in real world environment is not feasible it involves lot of danger and safety issues, different reports of the testing can’t also be generated so to overcome these limitation we need to carry out simulation of VANET in the computer environment i.e. we should do a computer simulation. Computer simulation is risk and danger free, we can generate different scenario (rural, urban, collision of vehicles) of the VANET using this. So computer simulation is very important in VANET research. Simulation of VANET is divided into two part a. Traffic simulation: Generation of traffic movement, Defining the mobility model for vehicle and creating traffic movement. b. Network simulation: Generating Inter communicating vehicle , Defining communication protocols. And both the simulation are connected in bi-directional coupling

    VACaMobil: VANET Car Mobility Manager for OMNeT++

    Full text link
    ©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The performance of communication protocols in vehicular networks highly depends on the mobility pattern. Therefore, one of the most important issues when simulating this kind of protocols is how to properly model vehicular mobility. In this paper we present VACaMobil, a VANET Car Mobility Manager for the OMNeT++ simulator which allows researchers to completely define vehicular mobility by setting the desired average number of vehicles along with its upper and lower bounds. We compare VACaMobil against other common methods employed to generate vehicular mobility. Results clearly show the advantages of the VACaMobil tool when distributing vehicles in a real scenario, becoming one of the best mobility generators to evaluate the performance of different communication protocols and algorithms in VANET environments.This work was partially supported by the Ministerio de Economía y Competitividad, Spain, under Grants TIN2011-27543-C03-01 and BES-2012-052673, and by the Ministerio de Educación, Spain, under the FPU program, AP2010-4397, AP2009-2415.Báguena Albaladejo, M.; Tornell, SM.; Torres Cortés, Á.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2013). VACaMobil: VANET Car Mobility Manager for OMNeT++. IEEE. https://doi.org/10.1109/ICCW.2013.6649393

    A Tool Offering Steady-State Simulations for VANETs

    Full text link
    [EN] Without realistic vehicle mobility patterns, the evaluation of communication protocols in vehicular networks is compromised. Moreover, in order to ensure repeatability and fairness in vehicular simulations, researchers require simulation tools that allow them to have a complete control of simulations. In this paper we present VACaMobil, a Mobility Manager for the OMNeT++ simulator which offers a way to create complex scenarios with realistic vehicular mobility by allowing to define the desired average number of vehicles, along with its upper and lower bounds, which are maintained throughout the simulation. We compare VACaMobil against other commonly used methods which also generate and manage vehicular mobility. Results expose some flaws of those basic tools, and shows that VACaMobil behaves significantly better. The harmful impact on communication protocols when using common tools is also quantified, revealing VACaMobil as a necessity for current research.This work was partially supported by the Ministerio de Economía y Competitividad, Spain, under Grants TIN2011-27543- C03-01 and BES-2012-052673, by the Ministerio de Educación, Spain, under the FPU program, AP2010-4397, AP2009-2415, and by the Universitat Politècnica de València under project ABATIS (PAID-05-12).Báguena Albaladejo, M.; Martínez Tornell, S.; Torres Cortés, Á.; Calafate, CT.; Cano Escribá, JC.; Manzoni, P. (2013). A Tool Offering Steady-State Simulations for VANETs. Recent Patents on Telecommunications. 2(2):102-112. http://hdl.handle.net/10251/40658S1021122

    iTETRIS Platform Architecture for the Integration of Cooperative Traffic and Wireless Simulations

    Get PDF
    The use of cooperative wireless communications can support driving through dynamic exchange of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) messages. Traffic applications based on such systems will be able to generate a safer, faster, cheaper and cleaner way for people and goods to move. In this context, the iTERIS project aims at providing the framework to combine traffic mobility and wireless communication simulations for large scale testing of traffic management solutions based on cooperative systems. This paper addresses the description and explanation of the implementation choices taken to build a modular and interoperable architecture integrating heterogeneous traffic and wireless simulators, and application algorithms supporting traffic management strategies. The functions of an “in-between” control system for managing correct simulation executions over the platform are presented. The inter-block interaction procedures identified to ensure optimum data transfer for simulation efficiency are also introduced

    Review of Ad Hoc Networks scenarios and challenges in years 2015-2019

    Get PDF
    A Mobile Ad-hoc Network (MANET) protocol performance analysis depends on the type of simulation tools, mobility models, and metrics used. These parameters\u27 choice is crucial to researchers because it may produce an inaccurate result if it is not well chosen. The challenges researcher is facing are on the choice of these four parameters. Our survey shows an inclination to used Ad-hoc On-Demand Distance Vector routing (AODV) for performance comparison and enhancement of it by the researcher. Network simulation 2 (NS2) was the most selected tool, but we observe a decline in its utilization in recent years. Random Waypoint Mobility model (RWPM) was the most used mobility model. We have found a high percentage of the published article did not mention the mobility models use; this will make the result difficult for performance comparison with other works. Packet Delivery Ratio (PDR), End to End Delay (E2ED) were the most used metrics. Some authors have self-developed their simulation tools; the authors have also used new metrics and protocols to get a particular result based on their research objective. However, some criteria of choosing a protocol, metrics, mobility model, and simulation tool were not described, decreasing the credibility of their papers\u27 results. Improvement needs to be done in the Ad-hoc network in terms of benchmark, acceptable scenario parameters. This survey will give the best practice to be used and some recommendations to the Ad-hoc network community

    Public Safety Applications over WiMAX Ad-Hoc Networks

    Get PDF

    SUMO ENHANCEMENT FOR VEHICULAR COMMUNICATION DEVELOPMENT

    Get PDF
    It is normal that every family is having at least one vehicle at their home as vehicles have become a daily needs for all of us. However, this also leads to the increased of road accidents where major causes are related to human errors which can be prevented. To tackle with this problem, vehicular ad hoc network (VANET) is introduced with the aim to make vehicles intelligent. In order to study the algorithm in VANET, a mobility simulator is needed for simulation purpose. In this case, SUMO is proved to be a good simulation tool in generating VANET environment while MATLAB is good for algorithm development. Yet, to develop a good simulation platform, modification on SUMO files are necessary. This paper discusses on the procedures in creating a left-hand traffic (LHT) simulation file that is suitable to be used in Malaysia. LHT simulation is not easy to achieve as modification on the road connection and traffic light files are required. This paper also showed the results of the simulation after SUMO files modification. Apart from that, this paper also showed the simulation of VANET environment using SUMO and MATLAB through a third party interfacing named TraCI4Matlab, which allows communication between MATLAB and SUMO simulator

    Evaluation of efficient vehicular ad hoc networks based on a maximum distance routing algorithm

    Get PDF
    Traffic management at road intersections is a complex requirement that has been an important topic of research and discussion. Solutions have been primarily focused on using vehicular ad hoc networks (VANETs). Key issues in VANETs are high mobility, restriction of road setup, frequent topology variations, failed network links, and timely communication of data, which make the routing of packets to a particular destination problematic. To address these issues, a new dependable routing algorithm is proposed, which utilizes a wireless communication system between vehicles in urban vehicular networks. This routing is position-based, known as the maximum distance on-demand routing algorithm (MDORA). It aims to find an optimal route on a hop-by-hop basis based on the maximum distance toward the destination from the sender and sufficient communication lifetime, which guarantee the completion of the data transmission process. Moreover, communication overhead is minimized by finding the next hop and forwarding the packet directly to it without the need to discover the whole route first. A comparison is performed between MDORA and ad hoc on-demand distance vector (AODV) protocol in terms of throughput, packet delivery ratio, delay, and communication overhead. The outcome of the proposed algorithm is better than that of AODV

    Simulation framework for connected vehicles: a scoping review [version 2; peer review: 2 approved]

    Get PDF
    Background: V2V (Vehicle-to-Vehicle) is a booming research field with a diverse set of services and applications. Most researchers rely on vehicular simulation tools to model traffic and road conditions and evaluate the performance of network protocols. We conducted a scoping review to consider simulators that have been reported in the literature based on successful implementation of V2V systems, tutorials, documentation, examples, and/or discussion groups. Methods: Simulators that have limited information were not included. The selected simulators are described individually and compared based on their requirements and features, i.e., origin, traffic model, scalability, and traffic features. This scoping review was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The review considered only research published in English (in journals and conference papers) completed after 2015. Further, three reviewers initiated the data extraction phase to retrieve information from the published papers. Results: Most simulators can simulate system behaviour by modelling the events according to pre-defined scenarios. However, the main challenge faced is integrating the three components to simulate a road environment in either microscopic, macroscopic or mesoscopic models. These components include mobility generators, VANET simulators and network simulators. These simulators require the integration and synchronisation of the transportation domain and the communication domain. Simulation modelling can be run using a different types of simulators that are cost-effective and scalable for evaluating the performance of V2V systems in urban environments. In addition, we also considered the ability of the vehicular simulation tools to support wireless sensors. Conclusions: The outcome of this study may reduce the time required for other researchers to work on other applications involving V2V systems and as a reference for the study and development of new traffic simulators

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented
    corecore