14,135 research outputs found

    What makes industries believe in formal methods

    Get PDF
    The introduction of formal methods in the design and development departments of an industrial company has far reaching and long lasting consequences. In fact it changes the whole environment of methods, tools and skills that determine the design culture of that company. A decision to replace current design practice by formal methods, therefore, appears a vital one and is not lightly taken. The past has shown that efforts to introduce formal methods in industry has faced a lot of controversy and opposition at various hierarchical levels in companies, resulting in a marginal spread of such methods. This paper revisits the requirements for formal description techniques and identifies some critical success and inhibiting factors associated with the introduction of formal methods in the industrial practice. One of the inhibiting factors is the often encountered lack of appropriateness of the formal model to express and manipulate the design concerns that determine the world of the engineer. This factor motivated our research in the area of architectural and implementation design concepts. The last two sections of this paper report on some results of this research

    The design co-ordination framework : key elements for effective product development

    Get PDF
    This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, organisation, allocations, tasks etc. during the design process, has been identified. Each frame is explained and the co-ordination, i.e. the management of the links between these frames, is presented, based upon characteristic DC situations in industry. It is concluded that while the DCF provides a basis for our research efforts into enhancing the product development process there is still considerable work and development required before it can adequately reflect and support Design Co-ordination

    A framework for security requirements engineering

    Get PDF
    This paper presents a framework for security requirements elicitation and analysis, based upon the construction of a context for the system and satisfaction arguments for the security of the system. One starts with enumeration of security goals based on assets in the system. These goals are used to derive security requirements in the form of constraints. The system context is described using a problem-centered notation, then this context is validated against the security requirements through construction of a satisfaction argument. The satisfaction argument is in two parts: a formal argument that the system can meet its security requirements, and a structured informal argument supporting the assumptions expressed in the formal argument. The construction of the satisfaction argument may fail, revealing either that the security requirement cannot be satisfied in the context, or that the context does not contain sufficient information to develop the argument. In this case, designers and architects are asked to provide additional design information to resolve the problems

    Tracing the Scenarios in Scenario-Based Product Design: a study to support scenario generation

    Get PDF
    Scenario-based design originates from the human-computer interaction and\ud software engineering disciplines, and continues to be adapted for product development. Product development differs from software development in the former’s more varied context of use, broader characteristics of users and more tangible solutions. The possible use of scenarios in product design is therefore broader and more challenging. Existing design methods that involve scenarios can be employed in many different stages of the product design process. However, there is no proficient overview that discusses a\ud scenario-based product design process in its full extent. The purposes of creating scenarios and the evolution of scenarios from their original design data are often not obvious, although the results from using scenarios are clearly visible. Therefore, this paper proposes to classify possible scenario uses with their purpose, characteristics and supporting design methods. The classification makes explicit different types of scenarios and their relation to one another. Furthermore, novel scenario uses can be referred or added to the classification to develop it in parallel with the scenario-based design\ud practice. Eventually, a scenario-based product design process could take inspiration for creating scenarios from the classification because it provides detailed characteristics of the scenario

    Enhancing Formal Modelling Tool Support with Increased Automation

    Get PDF
    Progress report for the qualification exam report for PhD Student Kenneth Lausdahl. Initial work on enhancing tool support for the formal method VDM and the concept of unifying a abstract syntax tree with the ability for isolated extensions is described. The tool support includes a connection to UML and a test automation principle based on traces written as a kind of regular expressions

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Enabling the V2X Economy Revolution Using a Blockchain-based Value Transaction Layer for Vehicular Ad-hoc Networks

    Get PDF
    The next generation of tightly interconnected vehicles offers a variety of new technological as well as business opportunities. Those vehicles form so called vehicular ad-hoc networks (VANETs) in order to enable vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-human (V2H), or in general vehicle-to-everything (V2X) communication and interaction. A variety of manufacturers started implementing specific use cases, but limited to their own brands and products. However, a platform- and manufacturer-agnostic default standard for interactions and transaction within this new economy is still missing. This paper fills the gap in the state of the art by introducing a novel blockchain-based V2X platform that enables a transaction and interaction layer for goods and services required to kick-start the upcoming V2X economy. We present the general functions and features of the system, outline the requirements and goals as well as the architecture of the V2X platform. Moreover, we detail the system engagement processes of the identified stakeholders inside the V2X ecosystem and the theoretical foundations of those interactions and transactions
    corecore