32,213 research outputs found

    Progress on Polynomial Identity Testing - II

    Full text link
    We survey the area of algebraic complexity theory; with the focus being on the problem of polynomial identity testing (PIT). We discuss the key ideas that have gone into the results of the last few years.Comment: 17 pages, 1 figure, surve

    Deterministic Identity Testing for Sum of Read-Once Oblivious Arithmetic Branching Programs

    Get PDF
    A read-once oblivious arithmetic branching program (ROABP) is an arithmetic branching program (ABP) where each variable occurs in at most one layer. We give the first polynomial time whitebox identity test for a polynomial computed by a sum of constantly many ROABPs. We also give a corresponding blackbox algorithm with quasi-polynomial time complexity nO(logn)n^{O(\log n)}. In both the cases, our time complexity is double exponential in the number of ROABPs. ROABPs are a generalization of set-multilinear depth-33 circuits. The prior results for the sum of constantly many set-multilinear depth-33 circuits were only slightly better than brute-force, i.e. exponential-time. Our techniques are a new interplay of three concepts for ROABP: low evaluation dimension, basis isolating weight assignment and low-support rank concentration. We relate basis isolation to rank concentration and extend it to a sum of two ROABPs using evaluation dimension (or partial derivatives).Comment: 22 pages, Computational Complexity Conference, 201

    Quantum Query Complexity of Multilinear Identity Testing

    Get PDF
    Motivated by the quantum algorithm in \cite{MN05} for testing commutativity of black-box groups, we study the following problem: Given a black-box finite ring R=r1,...,rkR=\angle{r_1,...,r_k} where {r1,r2,...,rk}\{r_1,r_2,...,r_k\} is an additive generating set for RR and a multilinear polynomial f(x1,...,xm)f(x_1,...,x_m) over RR also accessed as a black-box function f:RmRf:R^m\to R (where we allow the indeterminates x1,...,xmx_1,...,x_m to be commuting or noncommuting), we study the problem of testing if ff is an \emph{identity} for the ring RR. More precisely, the problem is to test if f(a1,a2,...,am)=0f(a_1,a_2,...,a_m)=0 for all aiRa_i\in R. We give a quantum algorithm with query complexity O(m(1+α)m/2kmm+1)O(m(1+\alpha)^{m/2} k^{\frac{m}{m+1}}) assuming k(1+1/α)m+1k\geq (1+1/\alpha)^{m+1}. Towards a lower bound, we also discuss a reduction from a version of mm-collision to this problem. We also observe a randomized test with query complexity 4mmk4^mmk and constant success probability and a deterministic test with kmk^m query complexity.Comment: 12 page

    Shallow Circuits with High-Powered Inputs

    Get PDF
    A polynomial identity testing algorithm must determine whether an input polynomial (given for instance by an arithmetic circuit) is identically equal to 0. In this paper, we show that a deterministic black-box identity testing algorithm for (high-degree) univariate polynomials would imply a lower bound on the arithmetic complexity of the permanent. The lower bounds that are known to follow from derandomization of (low-degree) multivariate identity testing are weaker. To obtain our lower bound it would be sufficient to derandomize identity testing for polynomials of a very specific norm: sums of products of sparse polynomials with sparse coefficients. This observation leads to new versions of the Shub-Smale tau-conjecture on integer roots of univariate polynomials. In particular, we show that a lower bound for the permanent would follow if one could give a good enough bound on the number of real roots of sums of products of sparse polynomials (Descartes' rule of signs gives such a bound for sparse polynomials and products thereof). In this third version of our paper we show that the same lower bound would follow even if one could only prove a slightly superpolynomial upper bound on the number of real roots. This is a consequence of a new result on reduction to depth 4 for arithmetic circuits which we establish in a companion paper. We also show that an even weaker bound on the number of real roots would suffice to obtain a lower bound on the size of depth 4 circuits computing the permanent.Comment: A few typos correcte

    Algorithms for group isomorphism via group extensions and cohomology

    Full text link
    The isomorphism problem for finite groups of order n (GpI) has long been known to be solvable in nlogn+O(1)n^{\log n+O(1)} time, but only recently were polynomial-time algorithms designed for several interesting group classes. Inspired by recent progress, we revisit the strategy for GpI via the extension theory of groups. The extension theory describes how a normal subgroup N is related to G/N via G, and this naturally leads to a divide-and-conquer strategy that splits GpI into two subproblems: one regarding group actions on other groups, and one regarding group cohomology. When the normal subgroup N is abelian, this strategy is well-known. Our first contribution is to extend this strategy to handle the case when N is not necessarily abelian. This allows us to provide a unified explanation of all recent polynomial-time algorithms for special group classes. Guided by this strategy, to make further progress on GpI, we consider central-radical groups, proposed in Babai et al. (SODA 2011): the class of groups such that G mod its center has no abelian normal subgroups. This class is a natural extension of the group class considered by Babai et al. (ICALP 2012), namely those groups with no abelian normal subgroups. Following the above strategy, we solve GpI in nO(loglogn)n^{O(\log \log n)} time for central-radical groups, and in polynomial time for several prominent subclasses of central-radical groups. We also solve GpI in nO(loglogn)n^{O(\log\log n)} time for groups whose solvable normal subgroups are elementary abelian but not necessarily central. As far as we are aware, this is the first time there have been worst-case guarantees on a no(logn)n^{o(\log n)}-time algorithm that tackles both aspects of GpI---actions and cohomology---simultaneously.Comment: 54 pages + 14-page appendix. Significantly improved presentation, with some new result
    corecore