47,809 research outputs found

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    Optimal Point Placement for Mesh Smoothing

    Full text link
    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.Comment: 12 pages, 3 figures. A preliminary version of this paper was presented at the 8th ACM/SIAM Symp. on Discrete Algorithms (SODA '97). This is the final version, and will appear in a special issue of J. Algorithms for papers from SODA '9

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43

    The Stretch Factor of L1L_1- and L∞L_\infty-Delaunay Triangulations

    Get PDF
    In this paper we determine the stretch factor of the L1L_1-Delaunay and L∞L_\infty-Delaunay triangulations, and we show that this stretch is 4+22≈2.61\sqrt{4+2\sqrt{2}} \approx 2.61. Between any two points x,yx,y of such triangulations, we construct a path whose length is no more than 4+22\sqrt{4+2\sqrt{2}} times the Euclidean distance between xx and yy, and this bound is best possible. This definitively improves the 25-year old bound of 10\sqrt{10} by Chew (SoCG '86). To the best of our knowledge, this is the first time the stretch factor of the well-studied LpL_p-Delaunay triangulations, for any real p≥1p\ge 1, is determined exactly

    Singular Vertices and the Triangulation Space of the D-sphere

    Get PDF
    By a sequence of numerical experiments we demonstrate that generic triangulations of the D−D-sphere for D>3D>3 contain one {\it singular} (D−3)−(D-3)-simplex. The mean number of elementary D−D-simplices sharing this simplex increases with the volume of the triangulation according to a simple power law. The lower dimension subsimplices associated with this (D−3)−(D-3)-simplex also show a singular behaviour. Possible consequences for the DT model of four-dimensional quantum gravity are discussed.Comment: 15 pages, 9 figure

    Random lattice triangulations: Structure and algorithms

    Get PDF
    The paper concerns lattice triangulations, that is, triangulations of the integer points in a polygon in R2\mathbb{R}^2 whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a triangulation σ\sigma has weight λ∣σ∣\lambda^{|\sigma|}, where λ\lambda is a positive real parameter, and ∣σ∣|\sigma| is the total length of the edges in σ\sigma. Empirically, this model exhibits a "phase transition" at λ=1\lambda=1 (corresponding to the uniform distribution): for λ<1\lambda<1 distant edges behave essentially independently, while for λ>1\lambda>1 very large regions of aligned edges appear. We substantiate this picture as follows. For λ<1\lambda<1 sufficiently small, we show that correlations between edges decay exponentially with distance (suitably defined), and also that the Glauber dynamics (a local Markov chain based on flipping edges) is rapidly mixing (in time polynomial in the number of edges in the triangulation). This dynamics has been proposed by several authors as an algorithm for generating random triangulations. By contrast, for λ>1\lambda>1 we show that the mixing time is exponential. These are apparently the first rigorous quantitative results on the structure and dynamics of random lattice triangulations.Comment: Published at http://dx.doi.org/10.1214/14-AAP1033 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore