302 research outputs found

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    Modelling and Verification of Large-Scale Sensor Network Infrastructures

    Get PDF
    Large-scale wireless sensor networks (WSN) are increasingly deployed and an open question is how they can support multiple applications. Networks and sensing devices are typically heterogeneous and evolving: topologies change, nodes drop in and out of the network, and devices are reconfigured. The key question we address is how to verify that application requirements are met, individually and collectively, and can continue to be met, in the context of large-scale, evolving network and device configurations. We define a modelling and verification framework based on Bigraphical Reactive Systems (BRS) for modelling, with bigraph patterns and temporal logic properties for specifying application requirements. The bigraph diagrammatic notation provides an intuitive representation of concepts such as hierarchies, communication, events and spatial relationships, which are fundamental to WSNs. We demonstrate modelling and verification through a real-life urban environmental monitoring case-study. A novel contribution is automated online verification using BigraphER and replay of real-life sensed data streams and network events by the Cooja network simulator. Performance results for verification of two application properties running on a WSN with up to 200 nodes indicate our framework is capable of handling WSNs of that scale

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF

    Model checking medium access control for sensor networks

    Get PDF
    We describe verification of S-MAC, a medium access control protocol designed for wireless sensor networks, by means of the PRISM model checker. The S-MAC protocol is built on top of the IEEE 802.11 standard for wireless ad hoc networks and, as such, it uses the same randomised backoff procedure as a means to avoid collision. In order to minimise energy consumption, in S-MAC, nodes are periodically put into a sleep state. Synchronisation of the sleeping schedules is necessary for the nodes to be able to communicate. Intuitively, energy saving obtained through a periodic sleep mechanism will be at the expense of performance. In previous work on S-MAC verification, a combination of analytical techniques and simulation has been used to confirm the correctness of this intuition for a simplified (abstract) version of the protocol in which the initial schedules coordination phase is assumed correct. We show how we have used the PRISM model checker to verify the behaviour of S-MAC and compare it to that of IEEE 802.11

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Symbolic Programming of Distributed Cyber-Physical Systems

    Get PDF
    Cyber-Physical Systems (CPSs) tightly integrate physical world phenomena and cyber aspects of computational units. The composition of physical, computational and communication systems demands different levels and types of abstraction as well as novel programming methodologies allowing for homogeneous programming, knowledge representation and exchange on heterogeneous devices. Current modeling approaches, frameworks and architectures result fairly inadequate to the task, especially when resource-constrained devices are involved. This work proposes symbolic computation as an effective solution to program resource constrained CPS devices with code maintaining strict ties to high-level specifications expressed in natural language while supporting interoperability among heterogeneous devices. Design, architectural, programming, and deployment aspects of CPSs are addressed through a single formalism unifying the specification of both cyber and physical parts of CPSs. In particular, programming patterns are modeled as sequences of words adhering to natural language syntax and semantics. Given a software under test (SUT), i.e. an input program expressed as a natural language sentence, formal specifications are used to generate oracles for sentence verification and to generate input test cases. The choice of natural language inspired programming supplies a mechanism for the development of the same software on different hardware platforms, ensuring interoperability among heterogeneous devices. Formal specifications also permit to generate stress tests in order to verify that program components behave as expected in repeated execution. In order to make high-level symbolic programs run on real hardware devices with no loss of expressivity during the translation of high-level specifications into an executable implementation, this work proposes a novel software architecture, Distributed Computing for Constrained Devices (DC4CD), as a supporting platform. The proposed architecture enables symbolic processing and distributed computing on devices with very limited energy, communication and processing capabilities that can be integrated into CPSs. In particular, DC4CD has been extensively used to test the symbolic distributed programming methodology on Wireless Sensor Networks (WSNs) that include nodes with actuation abilities. The platform offers networking abstractions for the exchange of symbolic code among peer devices and allows designers to change at runtime, even wirelessly on deployed nodes, not only the application code but also system code.Cyber-Physical Systems (CPSs) tightly integrate physical world phenomena and cyber aspects of computational units. The composition of physical, computational and communication systems demands different levels and types of abstraction as well as novel programming methodologies allowing for homogeneous programming, knowledge representation and exchange on heterogeneous devices. Current modeling approaches, frameworks and architectures result fairly inadequate to the task, especially when resource-constrained devices are involved. This work proposes symbolic computation as an effective solution to program resource constrained CPS devices with code maintaining strict ties to high-level specifications expressed in natural language while supporting interoperability among heterogeneous devices. Design, architectural, programming, and deployment aspects of CPSs are addressed through a single formalism unifying the specification of both cyber and physical parts of CPSs. In particular, programming patterns are modeled as sequences of words adhering to natural language syntax and semantics. Given a software under test (SUT), i.e. an input program expressed as a natural language sentence, formal specifications are used to generate oracles for sentence verification and to generate input test cases. The choice of natural language inspired programming supplies a mechanism for the development of the same software on different hardware platforms, ensuring interoperability among heterogeneous devices. Formal specifications also permit to generate stress tests in order to verify that program components behave as expected in repeated execution. In order to make high-level symbolic programs run on real hardware devices with no loss of expressivity during the translation of high-level specifications into an executable implementation, this work proposes a novel software architecture, Distributed Computing for Constrained Devices (DC4CD), as a supporting platform. The proposed architecture enables symbolic processing and distributed computing on devices with very limited energy, communication and processing capabilities that can be integrated into CPSs. In particular, DC4CD has been extensively used to test the symbolic distributed programming methodology on Wireless Sensor Networks (WSNs) that include nodes with actuation abilities. The platform offers networking abstractions for the exchange of symbolic code among peer devices and allows designers to change at runtime, even wirelessly on deployed nodes, not only the application code but also system code

    A survey of fuzzy logic in wireless localization

    Get PDF
    • …
    corecore