11 research outputs found

    A platform-independent domain-specific modeling language for multiagent systems

    Get PDF
    Associated with the increasing acceptance of agent-based computing as a novel software engineering paradigm, recently a lot of research addresses the development of suitable techniques to support the agent-oriented software development. The state-of-the-art in agent-based software development is to (i) design the agent systems basing on an agent-based methodology and (ii) take the resulting design artifact as a base to manually implement the agent system using existing agent-oriented programming languages or general purpose languages like Java. Apart from failures made when manually transform an abstract specification into a concrete implementation, the gap between design and implementation may also result in the divergence of design and implementation. The framework discussed in this dissertation presents a platform-independent domain-specific modeling language for MASs called Dsml4MAS that allows modeling agent systems in a platform-independent and graphical manner. Apart from the abstract design, Dsml4MAS also allows to automatically (i) check the generated design artifacts against a formal semantic specification to guarantee the well-formedness of the design and (ii) translate the abstract specification into a concrete implementation. Taking both together, Dsml4MAS ensures that for any well-formed design, an associated implementation will be generated closing the gap between design and code.Aufgrund wachsender Akzeptanz von Agentensystemen zur Behandlung komplexer Problemstellungen wird der Schwerpunkt auf dem Gebiet der agentenorientierten Softwareentwicklung vor allem auf die Erforschung von geeignetem Entwicklungswerkzeugen gesetzt. Stand der Forschung ist es dabei das Agentendesign mittels einer Agentenmethodologie zu spezifizieren und die resultierenden Artefakte als Grundlage zur manuellen Programmierung zu verwenden. Fehler, die bei dieser manuellen Überführung entstehen, machen insbesondere das abstrakte Design weniger nützlich in Hinsicht auf die Nachhaltigkeit der entwickelten Softwareapplikation. Das in dieser Dissertation diskutierte Rahmenwerk erörtert eine plattformunabhängige domänenspezifische Modellierungssprache für Multiagentensysteme namens Dsml4MAS. Dsml4MAS erlaubt es Agentensysteme auf eine plattformunabhängige und graphische Art und Weise darzustellen. Die Modellierungssprache umfasst (i) eine abstrakte Syntax, die das Vokabular der Sprache definiert, (ii) eine konkrete Syntax, die die graphische Darstellung spezifiziert sowie (iii) eine formale Semantik, die dem Vokabular eine präzise Bedeutung gibt. Dsml4MAS ist Bestandteil einer (semi-automatischen) Methodologie, die es (i) erlaubt die abstrakte Spezifikation schrittweise bis hin zur konkreten Implementierung zu konkretisieren und (ii) die Interoperabilität zu alternativen Softwareparadigmen wie z.B. Dienstorientierte Architekturen zu gewährleisten

    GROVE: A computationally grounded model for rational intention revision in BDI agents

    Get PDF
    A fundamental aspect of Belief-Desire-Intention (BDI) agents is intention revision. Agents revise their intentions in order to maintain consistency between their intentions and beliefs, and consistency between intentions. A rational agent must also account for the optimality of their intentions in the case of revision. To that end I present GROVE, a model of rational intention revision for BDI agents. The semantics of a GROVE agent is defined in terms of constraints and preferences on possible future executions of an agent’s plans. I show that GROVE is weakly rational in the sense of Grant et al. and imposes more constraints on executions than the operational semantics for goal lifecycles proposed by Harland et al. As it may not be computationally feasible to consider all possible future executions, I propose a bounded version of GROVE that samples the set of future executions, and state conditions under which bounded GROVE commits to a rational execution

    GROVE: A computationally grounded model for rational intention revision in BDI agents

    Get PDF
    A fundamental aspect of Belief-Desire-Intention (BDI) agents is intention revision. Agents revise their intentions in order to maintain consistency between their intentions and beliefs, and consistency between intentions. A rational agent must also account for the optimality of their intentions in the case of revision. To that end I present GROVE, a model of rational intention revision for BDI agents. The semantics of a GROVE agent is defined in terms of constraints and preferences on possible future executions of an agent’s plans. I show that GROVE is weakly rational in the sense of Grant et al. and imposes more constraints on executions than the operational semantics for goal lifecycles proposed by Harland et al. As it may not be computationally feasible to consider all possible future executions, I propose a bounded version of GROVE that samples the set of future executions, and state conditions under which bounded GROVE commits to a rational execution

    Behavioural state machines

    Get PDF

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    An Unexpected Journey: Towards Runtime Verification of Multiagent Systems and Beyond

    Get PDF
    The Trace Expression formalism derives from works started in 2012 and is mainly used to specify and verify interaction protocols at runtime, but other applications have been devised. More specically, this thesis describes how to extend and apply such formalism in the engineering process of distributed articial intelligence systems (such as Multiagent systems). This thesis extends the state of the art through four dierent contributions: 1. Theoretical: the thesis extends the original formalism in order to represent also parametric and probabilistic specications (parametric trace expressions and probabilistic trace expressions respectively). 2. Algorithmic: the thesis proposes algorithms for verifying trace expressions at runtime in a decentralized way. The algorithms have been designed to be as general as possible, but their implementation and experimentation address scenarios where the modelled and observed events are communicative events (interactions) inside a multiagent system. 3. Application: the thesis analyzes the relations between runtime and static verication (e.g. model checking) proposing hybrid integrations in both directions. First of all, the thesis proposes a trace expression model checking approach where it shows how to statically verify LTL property on a trace expression specication. After that, the thesis presents a novel approach for supporting static verication through the addition of monitors at runtime (post-process). 4. Implementation: the thesis presents RIVERtools, a tool supporting the writing, the syntactic analysis and the decentralization of trace expressions
    corecore