10,629 research outputs found

    Robot programming by demonstration through system identification

    Get PDF
    Increasingly, personalised robots — robots especially designed and programmed for an individual’s needs and preferences — are being used to support humans in their daily lives, most notably in the area of service robotics. Arguably, the closer the robot is programmed to the individual’s needs, the more useful it is, and we believe that giving people the opportunity to program their own robots, rather than programming robots for them, will push robotics research one step further in the personalised robotics field. However, traditional robot programming techniques require specialised technical skills from different disciplines and it is not reasonable to expect end-users to have these skills. In this paper, we therefore present a new method of obtaining robot control code — programming by demonstration through system identification which algorithmically and automatically transfers human behaviours into robot control code, using transparent, analysable mathematical functions. Besides providing a simple means of generating perception-action mappings, they have the additional advantage that can also be used to form hypotheses and theoretical analysis of robot behaviour. We demonstrate the viability of this approach by teaching a Scitos G5 mobile robot to achieve wall following and corridor passing behaviours

    Robot training using system identification

    Get PDF
    This paper focuses on developing a formal, theory-based design methodology to generate transparent robot control programs using mathematical functions. The research finds its theoretical roots in robot training and system identification techniques such as Armax (Auto-Regressive Moving Average models with eXogenous inputs) and Narmax (Non-linear Armax). These techniques produce linear and non-linear polynomial functions that model the relationship between a robot’s sensor perception and motor response. The main benefits of the proposed design methodology, compared to the traditional robot programming techniques are: (i) It is a fast and efficient way of generating robot control code, (ii) The generated robot control programs are transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour, and (iii) It requires very little explicit knowledge of robot programming where end-users/programmers who do not have any specialised robot programming skills can nevertheless generate task-achieving sensor-motor couplings. The nature of this research is concerned with obtaining sensor-motor couplings, be it through human demonstration via the robot, direct human demonstration, or other means. The viability of our methodology has been demonstrated by teaching various mobile robots different sensor-motor tasks such as wall following, corridor passing, door traversal and route learning

    Learning by observation through system identification

    Get PDF
    In our previous works, we present a new method to program mobile robots —“code identification by demonstration”— based on algorithmically transferring human behaviours to robot control code using transparent mathematical functions. Our approach has three stages: i) first extracting the trajectory of the desired behaviour by observing the human, ii) making the robot follow the human trajectory blindly to log the robot’s own perception perceived along that trajectory, and finally iii) linking the robot’s perception to the desired behaviour to obtain a generalised, sensor-based model. So far we used an external, camera based motion tracking system to log the trajectory of the human demonstrator during his initial demonstration of the desired motion. Because such tracking systems are complicated to set up and expensive, we propose an alternative method to obtain trajectory information, using the robot’s own sensor perception. In this method, we train a mathematical polynomial using the NARMAX system identification methodology which maps the position of the “red jacket” worn by the demonstrator in the image captured by the robot’s camera, to the relative position of the demonstrator in the real world according to the robot. We demonstrate the viability of this approach by teaching a Scitos G5 mobile robot to achieve door traversal behaviour

    A Framework for Interactive Teaching of Virtual Borders to Mobile Robots

    Full text link
    The increasing number of robots in home environments leads to an emerging coexistence between humans and robots. Robots undertake common tasks and support the residents in their everyday life. People appreciate the presence of robots in their environment as long as they keep the control over them. One important aspect is the control of a robot's workspace. Therefore, we introduce virtual borders to precisely and flexibly define the workspace of mobile robots. First, we propose a novel framework that allows a person to interactively restrict a mobile robot's workspace. To show the validity of this framework, a concrete implementation based on visual markers is implemented. Afterwards, the mobile robot is capable of performing its tasks while respecting the new virtual borders. The approach is accurate, flexible and less time consuming than explicit robot programming. Hence, even non-experts are able to teach virtual borders to their robots which is especially interesting in domains like vacuuming or service robots in home environments.Comment: 7 pages, 6 figure

    Human-Machine Interface for Remote Training of Robot Tasks

    Full text link
    Regardless of their industrial or research application, the streamlining of robot operations is limited by the proximity of experienced users to the actual hardware. Be it massive open online robotics courses, crowd-sourcing of robot task training, or remote research on massive robot farms for machine learning, the need to create an apt remote Human-Machine Interface is quite prevalent. The paper at hand proposes a novel solution to the programming/training of remote robots employing an intuitive and accurate user-interface which offers all the benefits of working with real robots without imposing delays and inefficiency. The system includes: a vision-based 3D hand detection and gesture recognition subsystem, a simulated digital twin of a robot as visual feedback, and the "remote" robot learning/executing trajectories using dynamic motion primitives. Our results indicate that the system is a promising solution to the problem of remote training of robot tasks.Comment: Accepted in IEEE International Conference on Imaging Systems and Techniques - IST201

    Towards modeling complex robot training tasks through system identification

    Get PDF
    Previous research has shown that sensor-motor tasks in mobile robotics applications can be modelled automatically, using NARMAX system identi�cation, where the sensory perception of the robot is mapped to the desired motor commands using non-linear polynomial functions, resulting in a tight coupling between sensing and acting | the robot responds directly to the sensor stimuli without having internal states or memory. However, competences such as for instance sequences of actions, where actions depend on each other, require memory and thus a representation of state. In these cases a simple direct link between sensory perception and the motor commands may not be enough to accomplish the desired tasks. The contribution to knowledge of this paper is to show how fundamental, simple NARMAX models of behaviour can be used in a bootstrapping process to generate complex behaviours that were so far beyond reach. We argue that as the complexity of the task increases, it is important to estimate the current state of the robot and integrate this information into the system identification process. To achieve this we propose a novel method which relates distinctive locations in the environment to the state of the robot, using an unsupervised clustering algorithm. Once we estimate the current state of the robot accurately, we combine the state information with the perception of the robot through a bootstrapping method to generate more complex robot tasks: We obtain a polynomial model which models the complex task as a function of predefined low level sensor motor controllers and raw sensory data. The proposed method has been used to teach Scitos G5 mobile robots a number of complex tasks, such as advanced obstacle avoidance, or complex route learning

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años
    • …
    corecore