405,247 research outputs found
Linear Programming Relaxations of Quadratically Constrained Quadratic Programs
We investigate the use of linear programming tools for solving semidefinite
programming relaxations of quadratically constrained quadratic problems.
Classes of valid linear inequalities are presented, including sparse PSD cuts,
and principal minors PSD cuts. Computational results based on instances from
the literature are presented.Comment: Published in IMA Volumes in Mathematics and its Applications, 2012,
Volume 15
Using Graphing Calculators to Integrate Mathematics and Science
The computational, graphing, statistical and programming capabilities of today’s graphing calculators make it possible for teachers and students to explore aspects of functions and investigate real-world situations in ways that were previously inaccessible because of computational constraints. Many of the features of graphing calculators can be used to integrate topics from mathematics and science. Here we provide a few illustrations of activities that use the graphing, parametric graphing, regression, and recursion features of graphing calculators to study mathematics in science contexts
Constructive Mathematics in Theory and Programming Practice
The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop’s constructive mathematics(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focuses on the relation between constructive mathematics and programming, with emphasis on Martin-Lof’s theory of types as a formal system for BISH
The use of Grossone in Mathematical Programming and Operations Research
The concepts of infinity and infinitesimal in mathematics date back to
anciens Greek and have always attracted great attention. Very recently, a new
methodology has been proposed by Sergeyev for performing calculations with
infinite and infinitesimal quantities, by introducing an infinite unit of
measure expressed by the numeral grossone. An important characteristic of this
novel approach is its attention to numerical aspects. In this paper we will
present some possible applications and use of grossone in Operations Research
and Mathematical Programming. In particular, we will show how the use of
grossone can be beneficial in anti--cycling procedure for the well-known
simplex method for solving Linear Programming Problems and in defining exact
differentiable Penalty Functions in Nonlinear Programming
Computer programming in the UK undergraduate mathematics curriculum
This paper reports a study which investigated the extent to which undergraduatemathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016 programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first year coursesthan a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination)
A Universal Machine for Biform Theory Graphs
Broadly speaking, there are two kinds of semantics-aware assistant systems
for mathematics: proof assistants express the semantic in logic and emphasize
deduction, and computer algebra systems express the semantics in programming
languages and emphasize computation. Combining the complementary strengths of
both approaches while mending their complementary weaknesses has been an
important goal of the mechanized mathematics community for some time. We pick
up on the idea of biform theories and interpret it in the MMTt/OMDoc framework
which introduced the foundations-as-theories approach, and can thus represent
both logics and programming languages as theories. This yields a formal,
modular framework of biform theory graphs which mixes specifications and
implementations sharing the module system and typing information. We present
automated knowledge management work flows that interface to existing
specification/programming tools and enable an OpenMath Machine, that
operationalizes biform theories, evaluating expressions by exhaustively
applying the implementations of the respective operators. We evaluate the new
biform framework by adding implementations to the OpenMath standard content
dictionaries.Comment: Conferences on Intelligent Computer Mathematics, CICM 2013 The final
publication is available at http://link.springer.com
- …
