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ABSTRACT
This paper reports a study which investigated the extent to which undergraduate
mathematics students in the United Kingdom are currently taught to programme a
computer as a core part of their mathematics degree programme. We undertook an
online survey, with significant follow up correspondence, to gather data on current
curricula and received replies from 46 (63%) of the departments who teach a BSc
mathematics degree. We found that 78% of BSc degree courses in mathematics in-
cluded computer programming in a compulsory module but 11% of mathematics de-
gree programmes do not teach programming to all their undergraduate mathematics
students. In 2016 programming is most commonly taught to undergraduate mathe-
matics students through imperative languages, notably MATLAB, using numerical
analysis as the underlying (or parallel) mathematical subject matter. Statistics is
a very popular choice in optional courses, using the package R. Computer algebra
systems appear to be significantly less popular for compulsory first year courses
than a decade ago, and there was no mention of logic programming, functional pro-
gramming or automatic theorem proving software. The modal form of assessment
of computing modules is entirely by coursework (i.e. no examination).
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1. Introduction

A basic question university mathematics departments have to address is should we
teach our undergraduate students to programme a computer? If so, what should we
teach and how? This paper reports the results of a national survey to establish current
practice in UK mathematics degrees. Through this paper we hope to (1) inform other
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colleagues considering this issue now, (2) record some of the decision making processes
used by colleagues in developing curricula and teaching, and (3) create a permanent
record of what is happening in 2016 in what is a fast changing area.

It has long been acknowledged that computers serve many purposes in mathematics
education, [1] and programming forms only part of a broader use of computing in
the curriculum. For example, the previous review articles [2], [3] and [4] developed
a hierarchical taxonomy. The abstract study of algorithms, including correctness and
limitations, is highly mathematical and forms part of the heart of computer science as
a discipline. Software is also regularly used to explore key concepts, e.g. patterns in
sequences of numbers or formulae algebraically or graphically see e.g. [5], [6]. Software
is also used to compute results which are actually wanted, e.g. numerical simulations,
or in statistics. Some courses teach students to acquire specific IT skills, e.g. learning
how to use a particular software package to address an anticipated future employment
need. The research reported in this article considers only one branch of the taxonomy
developed by [2], namely programming computers.

Mathematics, at university and in school, is a rather traditional subject. Indeed, the
chalkboard has retained its place for university mathematics, see [7]. The relatively
newer subject of computer science has started to articulate its goals and boundaries
which at times appear to have significant commonalities with mathematics.

The essence of computational thinking is abstraction. In computing, we abstract notions
beyond the physical dimensions of time and space. [8]

While we do not want to engage in subject turf wars, mathematics departments do have
to address the place, if any, which computer programming has in an undergraduate
mathematics education. An accurate report of what currently happens in university
mathematics departments contributes background evidence to this discussion.

The Subject Benchmark Statement for Mathematics, Statistics and Operations Re-
search, [9], forms part of the UK Quality Code for Higher Education and sets out
the expectations that providers of UK higher education are required to meet. Under
subject specific skills, they list ‘use computers as an aid to mathematical study and
for acquiring any further information’ (pg 16). They also discuss online learning (§4.9,
p. 20) and using mathematical software.

§3.16 All graduates have some knowledge and understanding of mathematical computing,
with direct experience of specialist software and/or of programming, with an awareness of
the appropriateness of the software for the problems being addressed and, when feasible,
the nature of the algorithms on which it is based. [9, p. 16]

In terms of the benchmark standard for honours degrees, a graduate who has reached
the bachelor degree with honours threshold level should be able to demonstrate ‘com-
petent use of appropriate computer technology in mathematics’. The word ‘use’ here
could be interpreted solely as the ability to use a package to explore concepts or com-
pute results and our interpretation is that the phrase ‘and/or of programming’ does
not mandate computer programming for undergraduate students.

In the UK, typically, a student will study 120 credits per year, divided into 10 (or
20) credit modules over two semesters. That is, they will study somewhere between
3 and 6 subjects at a time for two semesters of about 11 weeks each. At least in
England, in undergraduate mathematics degrees, students commonly study few (if
any) courses in subjects outside the discipline and have relatively little choice until
their final year of study. This does vary by university and department, but the general
picture should be contrasted with a liberal arts tradition in North America where
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undergraduate students typically have much more choice over which modules comprise
their degree programme and even sometimes which member of staff they choose to
teach a particular subject.

2. Background

2.1. What is programming?

Computer programming (programming) is a process that starts with a problem and
ends in an executable computer program, also called software or code. Our focus is
on what is taught and why, rather than an investigation of what is learned, or on
any difficulties students routinely have with learning specific topics. Much has been
written about the difficulties students have in learning to programme, see [10] and [11]
for reviews of teaching programming. Primary hurdles include assignment of values
to variables, following sequential logic, recursion/iteration (see [12]) and concurrency.
For further background information, including key concept inventories, see [13], [14]
and [15].

There is a lot of ground between issuing individual commands to a computer, e.g. in
spreadsheet cells or a typed calculator programme (including Wolfram Alpha), and
writing complex structured code comprising many lines in separate packages. For the
purposes of this paper we mean writing relatively simple code, which has at least some
of the following hallmarks.

• Multiple dependent lines (not just a single command or macro).
• Control structures such as conditional logic and branching.
• Appreciation and use of data types both elementary (e.g. integer, float and

string) and structured (e.g. hash tables, objects).
• A sub-division of a problem into separate structures such as functions or objects.
• Use of iteration, recursion, or parallelism in the solution process.

We do not require students to encounter all the ideas listed as hallmarks although we
would expect many (if not most) to do so. Where such ideas are encountered they would
normally be done consciously and explicitly. We do not expect students to learn partic-
ular programming paradigms (e.g. imperative, functional, object oriented) or develop
a deep understanding of the differences between them. Much practical programming
relies on assembling code from libraries of functions. We expect mathematics students
to programme in this way and to consider foundational programming of algorithms
from scratch. We certainly do expect students to write some code for themselves in
a particular (prescribed) language. That is, we expect a practical component beyond
the abstract mathematical study of algorithms.

2.2. Computing in schools

In July 2013 there was a significant change to the National Curriculum for schools in
England1. From September 2014, Information and Communications Technology (ICT)
was changed to Computing, see [16] and [17]. Computing, the new subject, is split into
three categories; computer science, information technology and digital literacy. School
students, from the age of five until they leave the school system, will be learning skills

1Responsibility for school education in the United Kingdom is devolved to the four regional administrations
in England (the largest), Scotland, Wales and Northern Ireland.
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Figure 1. Numbers of students taking examinations in GCE Advanced Level Computing (solid line) and
Information and Communication Technology (ICT) from 2001 to 20015. Data from www.jcq.org.uk (retrieved

27 June 2016)

such as the foundations of computing science (for example logic, algorithms etc.),
will be taught to adapt and write their own programs. If these curricular changes
succeed then school students arriving at university will already be significantly more
proficient in computer programming than is currently the case. Hence it is very likely
that universities will also have to change. This research is in anticipation of potential
change in university mathematics courses.

Concurrently with this new curriculum are many initiatives for schools such as the
Raspberry Pi [18] and the more recent Micro:bit (see https://www.microbit.co.uk/

retrieved 18 August 2016). Both of these schemes aim to make programming accessible
to all school students across the UK and in 2016 the Micro:bit was given without charge
to all children in their first year of UK secondary school.

In England, Wales and Northern Ireland GCE Advanced Level examinations (A-
levels) are the final examinations taken in school, typically taken aged 18, and are
normally used as entry criteria for higher education. The number of students taking
A-level Computing are shown in Figure 1. Note that currently only 8.5% of students
taking computing are female, which is by far the lowest proportion of any subject:
physics, the next lowest proportion, has 21.5% female students. The introduction of
A-level Information and Communication Technology (ICT) in 2004 coincided with a
crash in numbers of students taking computing, followed by a steady decline in overall
numbers. Students appear to have opted instead for ICT, although [19, p. 87] sug-
gests that computing and ICT GCE A-level subjects are of almost identical difficulty,
(and comparable to mathematics A-level in difficulty). This sustained trend was only
reversed in 2014-2015 solely due to a significant increase of numbers in A-level com-
puting of 29.1%, the greatest increase that year of any subject. If the current rate
of growth is sustained then computing will overtake mathematics, the most popular
A-level subject, in under 12 years. This is, of course, unrealistic. While, in the UK
context, the numbers of students in each cohort taking A-level computing are mod-
est we note that significant and rapid growth is possible. Notably, A-level Further
Mathematics rose from around 5,000 students in 2005 to over 14,000 students in 2014
(160% increase, an average of 11.2% per year) in what is known to be one of the most
demanding subjects, [19]. The sustained work of the MEI Further Mathematics Sup-
port Programme in promoting and directly facilitating the teaching and learning of
the subject in schools appears to have resulted in a significant rise in numbers taking
further mathematics, see [20] but also note the wider trends in [21]. It is therefore

4



possible, with the right support for teachers, to make significant changes in patterns
of participation in education.

2.3. University and Employability

Computer Science is a very popular subject at university. Indeed, in each of the years
2011-2016, more UK students began a Computer Sciences undergraduate degree course
than started Physics, Chemistry and Mathematics combined. However, between 2007
and 2014 computer science consistently and significantly had the highest rate of un-
employed graduates of any science, technology, engineering or mathematics (STEM)
subject in the UK. [22] suggests that unemployment appears to be worse among uni-
versities with low average entry scores and that students who lack awareness of the
importance of choosing the right course and who do not develop ‘soft skills’ alongside
their technical knowledge are also less likely to find graduate employment. There are
also significantly fewer women studying Computer Sciences at university (13% com-
pared to 32% in STEM generally and 40% in mathematics)2. We acknowledge and
are mindful of these problems: mathematics departments do not want to unwittingly
implement situations which replicate them in mathematics degree programmes.

In other disciplines, particularly engineering, it has long been acknowledged that
computers significantly change the educational needs of students. For example, the
Société Européenne pour la Formation des Ingenieurs (SEFI) have undertaken regular
curriculum development and their mathematics working party report [23] focused on
the changes to the mathematical needs of engineers in the light of computing. ‘§
2.1 The development of new technology, notably computers, is doubtless the largest
single factor that has affected the redesign of a Core Curriculum [...]’ [23, p. 6]. The
importance of computing to engineers was echoed in the current SEFI curriculum [24].

3. Research questions

To what extent are undergraduate mathematics students taught to programme a com-
puter as a core part of their mathematics degree programme in the UK? What are
they taught, why and by whom?

• Is computer programming specifically mentioned in the programme level speci-
fications, e.g. as a desirable graduate level attribute?
• Are undergraduate students required to learn computer programming as a core

part of their mathematics degree programme? If so, how much time is spent and
how is programming assessed?
• What programming languages are used and why were these selected?
• Who does the teaching: mathematics staff or computer science staff?
• Did the department review computing recently and if so what where the conclu-

sions?

We are also interested in the attitudes to computer programming held by staff in math-
ematics departments. Accurate and comprehensive attitudinal data is very difficult to
gather. In this study we have chosen to gather and analyse factual data. Unlike schools,
university mathematics departments enjoy considerable freedom to develop their own

2www.hesa.ac.uk (retrieved 21 June 2016), Table 4: HE student enrolments by level of study, subject area,

mode of study and sex 2010/11 to 2014/15. Statistical First Release 224.
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curricula. We believe the choices made for compulsory undergraduate courses are nor-
mally the result of considerable thought, debate and compromise. Current curricula
therefore embody the results of departmental reviews and discussion and so enacted
curricula are a manifestation of the attitudes of staff in the department. At least, the
enacted curricula choices represent the prevailing attitudes of staff. However this free-
dom is constrained by institution wide policies, particularly those associated with the
nature of assessments.

4. Methodology

To address our research questions we undertook a national survey of UK mathematics
departments. We developed the short online survey recorded in Appendix A. Given
much of the factual data we are primarily interested in is openly published, we had
the opportunity to engage in follow up correspondence with departments to clarify our
understanding and obtain complete module information. Note that this survey asked
respondents to reply on behalf of their department, with only one final question on their
personal attitudes. Where the responses pointed us to publicly available information
such as module descriptions from websites, which we subsequently retrieved, we have
attributed the information to particular departments.

To identify mathematics degree/department we used the Universities and Colleges
Admissions Service in the UK (UCAS) admissions website. We selected those UK
departments offering a Mathematics BSc degree programme (with a UCAS admissions
code G100) starting in 2016. This resulted in a list of N = 73 departments of interest.
We rejected taking the list of departments sending returns to the Research Excellence
Framework (REF) as this did not adequately reflect our interest in undergraduate
teaching.

In May 2016 a link to the online survey was sent (1) direct to individuals known to
us and (2) to the mailing list of the Heads of Departments of Mathematical Sciences
(HoDoMS). This resulted in over 30 responses on behalf of unique departments. During
May and June 2016 further follow-up correspondence was used as required, e.g. to ob-
tain module specifications which were not publicly available online. We also identified
departments which did not respond during the first round. Through an internet search
we identified individuals, such as ‘directors of studies’ or ‘heads of administration’, who
were likely to have a significant role in undergraduate teaching and contacted them
directly with one further request to respond to our online survey. This resulted in over
60 responses on behalf of 46 unique departments. Where we had more than one indi-
vidual from a particular department respond we amalgamated the results and cross
checked any information.

We have chosen to concentrate on assembling factual curricula data but we are also
interested in attitudes. Where module specifications were not publicly available we
then contacted those institutions and asked if they could be sent via email. When ad-
vised these were not confidential we have also attributed the information to particular
departments.

We acknowledge the unreliability of attitudinal data and the difficulties in gath-
ering a comprehensive and representative sample of such data. Given the method of
recruiting participants we are particularly concerned about potential bias in responses
to this part of the survey. However, we did include one question on attitudes held
by staff to computer programming in our survey. We know discussion of program-
ming can be contentious and anticipated colleagues would possibly hold strong views
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on this subject. This question was designed to enable respondents to express those
views separately from the factual data. We treat this information as confidential and
with caution and do not report it here as representative of staff in UK mathematics
departments. Responses to this question are included in our discussion.

5. Results

We received complete responses from 38 (52%) departments and a partial response
from 46 (63%) individual departments.

5.1. Is computer programming specifically mentioned in the programme
level specifications, e.g. as a desirable graduate level attribute?

We found that programme level specifications are often very general, possibly just
reflecting aspiration rather than having a serious day to day impact on teaching. As
one colleague comments to this question:

Not to my knowledge... I’m not sure we have programme-level outcomes for our degree
programmes, which is an oversight if not. It’s possible I’m just not aware of them.

Only 13/46 (28%) of programme level specifications we gathered specifically men-
tioned computer programming as a desirable graduate level attribute. The majority of
programme level specifications make reference to the importance of ‘computing’ with-
out specifically making the distinctions between computer programming, professional
training in packages (such as R or MATLAB), or using computers to experiment and
calculate. A number of colleagues suggested that programming was an implicit require-
ment or there was a strong expectation that students would programme particularly
within computational projects, even if programming was not explicitly mentioned.

5.2. Are undergraduate students required to learn computer programming
as a core part of their mathematics degree programme? If so, how
much time is spent and how is programming assessed?

Table 1 shows the extent to which programming is taught, with the percentages calcu-
lated on the basis of 46 partial responses. Computer programming is a compulsory part
of 78% of the single honours courses in mathematics. However, 11% of mathematics
degree programmes do not teach programming to their students as a compulsory sub-
ject. We note with interest that while only 28% of programmes specifically mentioned
computer programming as a desirable graduate level attribute, computer programming
is a compulsory part of 78% of the single honours courses.

We received full module specifications for 65 modules which colleagues identified as
focused on, or containing a significant element of, computing. Table 2 records data
on the contribution of an examination to the overall module mark. Note that in all
modules we examined the contribution was a multiple of 10%, with 19 modules (29%)
having no examination (i.e. 100% coursework contribution) and 3 modules (5%) having
100% examination, i.e. no coursework component. When adding in the exam and
coursework percentages, we counted exams as any exam which took part during any
main exam session. For the purposes of our analysis any class tests etc. were counted
as a part of the coursework. For some modules the precise assessment arrangements
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All single and joint honours students take a compulsory course where
computer programming is a significant learning goal

24 (52%)

Computer programming is optional for all students 5 (11%)
All single honours students take a compulsory course where computer
programming is a significant learning goal. This is optional for joint
honours

12 (26%)

Computer programming is not taught as part of our mathematics degree
programmes

5 (11%)

Table 1. The extent to which programming is taught

0% 19 60% 7
10% 0 70% 10
20% 1 80% 11
30% 0 90% 1
40% 2 100% 3
50% 11

Total 65

Table 2. Frequency of proportion of assessment which is examination, by module

were not specified in the module specification and these modules are omitted from our
analysis.

We found that only 3 (5%) of computing modules were assessed entirely by closed
book examination and 23% used closed book examinations for at least three quarters
of the final mark. To put these results in context we note that [25] found that over
25% of the modules in their survey were assessed entirely by closed book examination
and nearly 70% used closed book examinations for at least three quarters of the final
mark. So, while 66% of modules have a traditional examination for more than half the
assessment, computing is disproportionately assessed by a significant coursework com-
ponent compared to other university mathematics modules. Some 29% of modules are
assessed entirely by coursework. The modal form of assessment of computing modules
is entirely by coursework.

How is mathematics and computing combined? For example, is computing taught
through pure mathematics, applied mathematics or statistics courses? We received full
specifications for 65 modules and partial specifications (sometimes the title and level
only) for a total of 124 modules. To answer these questions we looked at the module
titles of the 124 modules available to us. The first author sorted these module titles,
identifying codes shown in Table 3. These codes include three broad categories (1)
academic area of mathematics, (2) nature of the course (e.g. workshop), (3) references
to programming, including languages used. Having identified these codes each author
independently applied as many codes as relevant to each module title and compared
their coding of the data. For example a module ‘Programming and Numerical Methods’
was coded twice to reflect the explicit subject matter and the fact that programming
is mentioned in the title.

The final data is shown in Table 3. Our data show that numerical analysis is cur-
rently the most common mathematical subject for compulsory courses which involve
programming. Statistics is also popular, particularly for optional courses. There were
very few explicit pure mathematics courses in our sample and it appears that comput-
ing is more popular amongst applied mathematicians and statisticians. There were no
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Code Compulsory Optional
Numerical analysis/methods 13 11
Probability/statistics 6 24
Modelling 2 5
Calculus/ Other ODEs 5 4
Finance 0 4
Other applied course (e.g. waves) 5 6
Pure course (algebra, discrete mathematics) 4 0
Explicit computer science or programming course, e.g.
a title such as ‘computer programming’, or subject
matter such as ‘algorithms’

5 6

Only a vague general computational title, ‘Computa-
tional Mathematics’, ‘Introduction to Scientific Com-
putation’

11 14

Intensions: e.g. problem solving/skills 5 3
Teaching situation: e.g. workshops/projects 2 1
Explicit programming language mentioned in the title 1 6
Unspecified (module code only) 2 0

Table 3. Coding of module titles

courses on logic, proof or automation of proof in our sample. It is also highly unusual
to explicitly mention the programming language in the title of a compulsory course.

5.3. What programming languages are used and why were these selected?

We identified 26 year 1 compulsory courses and of these 24 had programming languages
specified. A Venn diagram showing the popularity of programming languages in year
1 compulsory programming courses is shown in Figure 2. The intersection of regions
in the diagram represents courses where more than one language was taught.

For example, two courses made use of both MATLAB (see
http://www.mathworks.com retrieved 18 August 2016) and Maple (see
http://http://www.maplesoft.com/ retrieved 18 August 2016) and a total of
6 courses taught Maple. MATLAB was significantly more popular than other
languages, naturally corresponding to the more frequent choice of numerical anal-
ysis/methods as the subject matter to partner programming. General purpose
programming languages, such as Python, Visual Basic (VB) and Excel, are not
popular choices with most courses using an identifiably mathematical language such
as MATLAB, R (see https://www.r-project.org/ retrieved 18 August 2016) or
Maple.

More generally Table 4 shows the frequency of programming languages used, by
individual university (rather than by module). MATLAB is the most popular language
used at 28/46 institutions (61%), followed closely by R at 19/46 (41%). Maple is
only used by ten, about the same popularity as the general programming language
Python. Other languages, including Mathematica and GeoGebra (not strictly speaking
a programming language), were used by single institutions.

In terms of staff autonomy, respondents to our survey reported that ‘The language is
always specified and changes must be approved’ 22/42 (52%). For compulsory courses
the language was specified and changes must be approved in 10/42 (24%) cases. In
only 10/42 (24%) of replies to this question were staff free to choose which language

9



MATLAB = 7R = 5

2

Maple = 4

1

VB

1

Excel

1 11

Python 1

1

Figure 2. A Venn diagram showing the popularity of programming languages in year 1 compulsory program-
ming courses

Language No. universities which teach it
MATLAB 28

R 19
Python 11
Maple 10

VB (various) 6
C 4

C++ 4
Java 4
SAS 4

Fortran 3
LaTex 3
Othera 7

aOther languages: Fortran95, PHP, Excel, Mathematica, HTML, Geogebra and Xpress.
Table 4. Number of universities who teach each language (compulsory or optional)
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to teach. Unsurprisingly perhaps, for core courses the language is normally specified
in advance and staff are not free to choose this themselves.

5.4. Who does the teaching (e.g. mathematics staff or computer science
staff?)

It is relatively standard practice for mathematics staff to teach mathematics to non-
specialist students, e.g. in science and engineering, often described as service teaching.
We found that teaching programming to undergraduate mathematics students is differ-
ent. We found that in 25/41 (61%) of the institutions who responded to this question
all programming is taught by mathematics staff and in a further 13/41 (32%) cases
all compulsory programming is taught by mathematics staff, but students can take
optional courses in other departments. In only 3/41 (7%) of departments was there
a mix of teaching between mathematics and staff from other departments. In no de-
partment who responded was all compulsory programming taught by staff from other
departments.

5.5. Did the department review computing recently and if so what where
the conclusions?

Of the 40 departments who responded to this question 8 (20%) reported a current
ongoing review and a further 11 had completed one in 2015, or 2016. Therefore nearly
half of the UK mathematics departments have either an ongoing review of computing
in the curriculum, or have completed their own review within the last two years. In
many cases this review was part of a more general review of teaching and part of
regular quality assurance processes. However, no department had a review document
which was available for general release, suggesting there is significant duplication of
discussion on this issue and confirming our belief in starting this research that such a
publication might be of more use generally. One respondent commented

No School-wide review of [the] role of computer programming — it tends to be done
within subject groups. No reports available.

This might suggest even within individual schools or department there is no overall
consensus or agreement on what programming should be taught as a compulsory part
of the degree programme.

6. Discussion

We believe that our results provide a valuable data set on the state of play of the
role of computing in UK undergraduate mathematics education in 2016. Much of
the information we sought is (or should be) in the public domain and is published
freely on the websites of UK mathematics departments. Nevertheless, it is sometimes
difficult to locate programme descriptions or individual module specifications. In some
cases institutions choose to restrict this information to current staff and students
via password protected websites, even when it is not considered confidential and is
freely available on request. Given applicants to UK degree programmes consistently
cite information about their prospective course as the most important factor in their
choices it is somewhat surprising that a minority of universities do not provide easy
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access to information about degree requirements or individual module descriptions.
Further, details of course structure (e.g. what is optional, what is compulsory, which
courses are pre-requisites etc.) is provided in a different format at each institution.
Gathering this factual data in a consistent format and the subsequent analysis, was
therefore a substantial task.

Time is limited and so time spent on the development of teaching must, to some
extent, displace time available to undertake and publish excellent research, which
university academic staff are under considerable pressure to do. Some of our colleagues
expressed their frustration openly.

The problem is that the teaching of mathematics in *** is a complete and utter shambles.
Increasingly I feel that no one understands what anyone else is teaching and that there
is an emphasis on quantity of teaching rather than quality of learning. On top of this we
are also in the midst of a colossal reorganization of the university and everything is thus
up in the air in terms of the structure of the course. In terms of module specifications the
best I could find is the following attachment, which purports to explain what everyone
is teaching in the applied maths and statistics modules here.

It remains to be seen what, if any, effect the UK Teaching Excellence Framework
(TEF), a national initiative which seeks to gauge university teaching quality, will have
on the teaching and assessment of computer programming. If student satisfaction is
a significant component then challenging, but unpopular, courses could come under
threat, regardless of their merit. Subjects which are not core mathematics, such as
computer programming, might be especially at risk.

MATLAB was the most popular programming language being taught for year 1
compulsory courses. MATLAB had developed from a system for manipulating ma-
trices of floating point numbers efficiently and was designed originally with applied
mathematics and numerical simulations in mind. It is therefore not entirely surprising
that MATLAB is paired with numerical analysis as the subject matter for mathemat-
ical programming. However it is interesting that there were only 10 universities which
were using Maple. When we look at [2], Maple was the most popular language. Fur-
thermore, previous research found a wide range of other computer algebra systems,
including Derive. In our survey there wasn’t a single university which was still using
Derive and only one using Mathematica. Previous enthusiasm for computer algebra
appears to have diminished, e.g. over 35 years ago proponents of computer algebra
were very positive about the potential.

I propose that computer algebra is an ideal introduction to computer programming lan-
guage for math, science and engineering students, that it is an ideal principal language
for these students, and that the means are at hand for making it fill this role at all levels
throughout our educational system. [26].

Why has computer algebra together with pure mathematics as the vehicle for program-
ming lost popularity in UK undergraduate higher education? We have not specifically
investigated this question and it remains unanswered here, but given that the research
of [5] found that a large proportion of mathematicians use CAS for both research and
teaching, we found this surprising.

There were also many universities using non maths-specific languages such as
Python, Java, Excel etc.

MATLAB and Maple are proprietary (commercial) products and
we found no instances of the open source system Octave (see
https://www.gnu.org/software/octave/ retrieved 18 August 2016), Scilab
(see http://www.scilab.org/ retrieved 18 August 2016) or Maxima (see
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http://maxima.sourceforge.net/ retrieved 18 August 2016) which have very
similar goals and functionality. A strong research finding is that to become a useful
tool a given artifact (e.g. a software package) has to be tightly integrated in practice.
See the volumes [27] and [28] and the theoretical work on instrumentation such
as [29]. If software is only available in laboratories on campus machines it is not
surprising that students do not make use of it spontaneously or in other courses.

We found that no university let someone from outside the mathematics department
teach the core compulsory programming modules, i.e. this teaching is exclusively un-
dertaken by mathematics staff. This practice is in stark contrast to the teaching of
mathematics to engineers. In particular, [23] set out the following principles for the
teaching of mathematics to engineers on behalf of the SEFI working group.

(1) Mathematics courses for engineers are best taught by mathematicians.
(2) Mathematics should accompany a student from entry to degree.
(3) The use of computers is an integral part of mathematics courses.
(4) Mathematics courses should be taught with a strong emphasis on applications and

projects.
(5) Concentrated mini courses in mathematics should be avoided.

[23, p. vii]

It is interesting to reflect on analogies to these principals as we consider the teaching of
computer programming to mathematics undergraduates. De facto mathematicians do
not agree that computer programming courses for mathematicians are best taught by
computer scientists (point 1 in context). In most institutions computing is taught at
least in optional courses every year, i.e. from entry to degree (point 2 in context). Our
results indicate that there is normally a strong emphasis on applications and projects
(point 4 in context). It is interesting that mini courses in computing appears to be the
norm (point 5 in context). The consistent evidence from research on the integration
of technology in education is that students do not successfully transfer the use of any
technology when it is taught only in one isolated course or module. Instead it needs
to be an integral part of mathematics courses (point 3). Indeed, much of the thinking
and curriculum development of [23] is relevant and instructive when read with the
translation mathematics → computing firmly in mind.

Where engineering mathematics teaching is provided by user engineering departments,
there may be a risk of omission of general principles, nugatory duplication of others,
inexpert and old-fashioned usage, and an emphasis on rapidly ageing training methods
of approach at the expense of time-proven principles of education. [23, p. 10]

Computer programming languages come in a wide variety of paradigms, including
imperative, object oriented and functional. Notable by their absence in our analysis
were functional programming languages, such as LISP or Haskell, which are highly
mathematical. Similarly there was also no mention of logic programming, such as Pro-
log. Both functional and logical programming paradigms have their origins in lambda
calculus and logic, see [30]. It is therefore somewhat surprising that they are not cur-
rently taught and since they are at best optional, the vast majority of undergraduate
students will never encounter these programming paradigms as part of their under-
graduate education. Another notable absence in our analysis were interactive theorem
provers, proof assistants or any mention of the role of computers in proof. For exam-
ple Coq is an interactive theorem prover which allows the expression of mathematical
assertions, mechanically checks proofs of these assertions and claims to help users to
find formal proofs, see [31]. These ideas have been developed for more than a quarter
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of a century, indeed Coq was first released in 1989. Again, the vast majority of under-
graduate students will never encounter these tools. We did not investigate if these are
taught at the graduate level, or widely used by graduate students, but they have yet to
make any impression on undergraduate teaching. The lack of undergraduate students
with knowledge of (even perhaps knowledge of the existence of) CAS and automatic
theorem proving software has implications for the whole mathematical ecosystem: in
industry, teaching and future mathematical research. If undergraduate students do not
encounter these tools who then were they invented for, and what impact (if any) will
they have on the future of mathematical practice?

6.1. Personal views of colleagues

As a part of the survey we asked respondents if they had any personal comments on
the subject of programming in the mathematics curriculum. 28 colleagues left personal
comments in the final question, and in this section we briefly review those comments in
the light of our previous discussion. Both authors read these comments independently
and conducted an informal thematic analysis, noting again that there has been no
attempt to elicit an unbiased and representative sample of colleagues. For this reason
we have incorporated these comments in the discussion, rather than the formal results.

Not surprisingly given that these colleagues responded to a survey about comput-
ing in the curriculum there was a strong theme in these comments that computer
programming is essential (12 comments).

I think all mathematics undergraduates should take some compulsory programming. I
think we offer about the right amount of choice so that students can do significant
amounts of programming in optional course units.

One colleague even going as far as to support the initiatives taking place in schools:
‘I would say computer programming is essential and in fact should be already core to
A-level maths’. Some colleagues echoed the view that programming was an essential
part of mathematics, but more cited its future use in employment. In particular, that
employers provided a driver for computing within the curriculum (6 comments).

Almost all our graduates are using some form of programming and, whilst they did not
always see the point of it at uni, they are enjoying it in the workplace. It was comments
from employers that encouraged us to teach VBA in the new final year option.

However, these comments must be taken in the context that 11% of departments have
chosen not to teach programming to their undergraduates. There are a variety of
possible reasons. Perhaps there are a group of colleagues in mathematics departments
who believe that programming should not be taught, perhaps either because it is
not sufficiently important or does not belong in a mathematics degree. Alternatively
these departments may not teach computing because of a lack of resources (including
staff time), or because of choices about how the resources available best meet their
priorities.

Another common concern was the challenge students face in learning to programme,
combined with the result that programming was often not popular.

It is a skill that students would find increasingly useful to have, but one which they
appear reluctant to learn. Beyond the initial compulsory module in which programming
is taught, take-up of later programming modules is low. In a way I find this surprising
given that this generation of students has grown up with computers and computing
surrounding them for the entirety of their lives, and yet they still seem fearful of the
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programming aspect.

Colleagues also commented on the challenges of teaching, including the practical diffi-
culties associated with staff time when providing small group practical sessions to large
cohorts of undergraduate students. A number of colleagues mentioned predisposition,
enjoyment and motivation.

There is a strong split in the cohort between students that take maths precisely to avoid
issues like computing, and those that embrace it.

This is a question which deserves to be addressed more closely, particularly in the
context of a mathematics degree where programming is a secondary focus. Related to
motivation is the issue of transfer of programming skills more generally in the math-
ematics degree. ‘The object really is to use Maple throughout the course, but most
students only program if they absolutely have to.’ Staff have a critical role in shap-
ing students’ beliefs about the importance (or otherwise) of computer programming.
Students’ beliefs appear to play an important role in how students learn new infor-
mation: [32]. For example, a meta-analysis of the relationship between self-beliefs and
achievement found early self-beliefs correlated positively with later achievement, [33].
One colleague mentioned non-examinable additional courses on offer by the Univer-
sity Information Services which keen students can take to learn programming. Many
universities offer such courses, but we have no data on the number of mathematics
students who choose to sit them.

Joint honours students often have many conflicting demands on their time, and
computer programming (and sometimes laboratories on the science side of the joint
degree) are not included as compulsory. Many universities already include program-
ming for joint honours students, and one university has recently moved to include
them.

It’s [i.e. computer programming] important, reflected by our move to effectively moved
bring teaching of computer programming forward a year in our single honours pro-
gramme, and to ensure that joint honours/major-minor students also pick up these skills
through compulsory modules.

In summary, programming is seen as essential to an undergraduate mathematics
degree, both as part of the discipline of mathematics and for future employability.
However, computer programming is a challenging subject to teach, with colleagues
reporting a split in the cohort between students who enjoy programming and those
who strongly do not, some having actively taken mathematics to avoid programming.
Perhaps those who already enjoy programming make subsequent use in other courses,
while those who did not enjoy programming are keen to minimise their future use
outside the formal assessments. In this respect, it is important for university mathe-
maticians to decide whether programming really is an important part of mathematics.
If programming is important then this needs to be demonstrated through genuine use
for substantial mathematical tasks outside the formal programming modules.

6.2. Limitations and future directions

This is a study about curriculum and teaching not about learning and a study of what
students actually experience and learn by the end of a mathematics degree would be a
separate question. Attitudes to programming have been studied elsewhere, e.g. [32]. We
are planning a comprehensive study of students’ attitudes to computer programming
as part of their undergraduate mathematics degree, which will be a separate and self-
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contained study. We have also initiated a longer term study to track any changes in
the experiences of computer programming in schools by students at the point they
arrive in university. These two studies will complement the factual curriculum data
we have presented here.

This study only considered United Kingdom undergraduate mathematics. While
this is a limitation in an international context a wider study would have necessitated
consideration of the very different undergraduate degree structures which exist else-
where. For example, the extent to which courses are optional or compulsory, and how
assessments are undertaken. Informal discussions with colleagues elsewhere indicate
that the role of computing for mathematics students, and the split between computer
science and mathematics more generally, are current concerns in many jurisdictions
and at all educational levels. This focused study considers one part of this story.

7. Conclusion

We undertook an online survey, with significant follow up correspondence, to gather
data on current curricula for undergraduate mathematics degrees in the UK. We re-
ceived complete replies from 52% of departments and a partial response from 63%
of UK mathematics departments, and we conclude that this data set provides a use-
ful summary about the current teaching of computer programming to undergraduate
mathematics students. We found that 78% of BSc degree courses in mathematics in-
cluded computer programming as a compulsory module, however 11% of mathematics
degree programmes do not teach programming to all their students. The modal form
of assessment of computing modules is entirely by coursework (i.e. no examination),
which is not typical of undergraduate assessment. We found no examples of compul-
sory computing modules being taught by computer science staff as a service subject
to mathematics. In 2016, programming is most commonly taught to undergraduate
mathematics students through imperative languages, notably MATLAB, using numer-
ical analysis as the mathematical subject matter. Statistics is a very popular choice
in optional courses, using the package R. A surprising result is that computer algebra
systems appear to be significantly less popular for compulsory first year courses than a
decade ago, and there was no mention of logic programming, functional programming
or automatic theorem proving software.
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Appendix A. Online survey questions

(1) [Detailed participation statement omitted]. I consent to take part.
(2) What is your university?
(3) Does your single honours course explicitly mention computer programming in

the programme outcomes or as a graduate attribute? Please can you quote from the
relevant programme specification or graduate attributes?

(4) Are undergraduate students required to learn computer programming as a core
part of their mathematics degree programme?

Please choose an option from

• All single and joint honours students take a compulsory course where computer
programming is a significant learning goal.
• All single honours students take a compulsory course where computer program-

ming is a significant learning goal. This is optional for joint honours.
• Computer programming is optional for all students.
• Computer programming is not taught as part of our mathematics degree pro-

grammes.

(5) Which programming languages do you teach and to which years (single hon-
ours)?

(6) What is/are the module code(s) for courses/modules which are dedicated to
programming, or in which programming is an important intended learning outcome?

Are your module specifications available online? If so, please provide links.
If not, please could email module specifications to: [...]
(7) Are specific languages listed in the module specifications or are staff free to

choose a programming language?
(8) When did your department last review the role of computer programming in the

curriculum? Is a review report available? Please could you email anything relevant to
[...]

(9) Do staff from the mathematics department teach programming, or is this taught
by other departments as a service subject to mathematics?

Please choose an option from

• All programming is taught by mathematics staff.
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• All compulsory programming is taught by mathematics staff, but students can
take optional courses in other departments.
• All compulsory programming is taught by staff from other departments.
• There is a mix of teaching between mathematics and staff from other depart-

ments.

(10) Do you have any personal comments about the role of computer programming
for UG students?

Appendix B. Typical module descriptions

The syllabus of two typical modules is recorded below.

B.1. University of Bath: XX10190, Programming and discrete
mathematics 1

This year 1 course is worth 12 credits and assessment is by coursework 50%, and
examination 50%. Students must have A Level Mathematics grade A or equivalent in
order to take this unit.

The role of computing in mathematics. MATLAB programming environment: Edit-
ing, importing and exporting data, getting help, functionality, graphics and mathe-
matical applications. Control structures for programming: Pseudocode, selection state-
ments, repetition statements. Elementary logic in programming. Elementary mathe-
matical applications: e.g. summing series. Data types: integers, real and complex num-
bers. Binary representation. Arrays, user-defined data structures. Procedures, types
of variables, parameter passing, scope of functions, functions as arguments. Applica-
tions, e.g. to modular arithmetic. Graphs, trees, sorting and searching: applications.
Complexity of algorithms, order of an algorithm, examples of algorithms with log-
arithmic, polynomial and exponential order. Proofs by induction. Recursion and its
relation to induction. Mathematical applications of recursion, e.g. Pascal’s triangle,
Euclid’s algorithm, computing fractals. Matrices and matrix operations. Applications,
e.g. Fibonacci numbers, modelling networks. Object-oriented programming. The ob-
ject oriented paradigm, defining classes in MATLAB, encapsulation. Examples from
graphics. Software development. The difficulty of formal proof, and the importance of
testing. ‘black box’ versus ‘white box’ testing. Test coverage, and its importance in
MATLAB. Cryptography, RSA. Error correcting codes. Digital signal processing and
FFT.

B.2. Queen Mary, University of London: MTH4105, Introduction to
Mathematical Computing

This year 2 course is worth 15 credits and assessment is by coursework 10% (class
test), and examination 90%.

1. Mathematical documents: Running Maple; inputting and evaluating mathemat-
ics; writing mathematical documents; palettes, templates and placeholders; Maple
help; errors and how to fix them.
2. Introduction to Maple functions: Execution groups and output labels; elementary
mathematical functions; floating-point; operators as functions; computational func-
tions diff, int.
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3. More Maple functions: The functions sum, product, add, mul, eval, limit; case study
Taylor series; case sensitivity and inert functions; subscripts; evalf; simplify, expand
and factor; prime numbers and integer factorization.
4. Finite sets, lists and sequences: Names; assignment and unassignment; predicates;
set membership and equality; subsets and power sets; union, intersection, difference
and symmetric difference; cardinality; binomial coefficients and factorials; lists and
sequences; seq and $.
5. Plotting, strings and drawing: 2-D plotting, plot; discontinuities; strings and plot
annotation; drawing; multiple plots; plotting points and geometrical plotting; assign-
ing plots; the plots package, implicit plots; 3-D plotting, plot3d; animation.
6. Boolean logic: Logical values and relational operators; lhs and rhs; is versus evalb;
Boolean algebra and set theory; De Morgan’s laws; the exclusive-or and implies oper-
ators; Boolean operators as functions; testing properties of sets.
7. Repeating, deciding and indexing: Statements and terminators; repeating
for. . .from. . .by. . .to. . .do; parallel assignment; generating multi-step recursive se-
quences; deciding if. . .then. . .elif. . .else. . .; break and next; for. . .in. . .do; indexing;
while. . .do.
8. Defining and using functions: Applying functions to elements of data structures;
the domain, codomain and range of a function; piecewise-defined functions; functions
on finite sets plotting, equality; injectivity, surjectivity and inverses of functions on
finite sets.
9. Relations and divisibility: Relations on finite sets; properties of relations; partitions
of finite sets; equivalence relations on finite sets; solving equations and inequalities
solve and fsolve; division and divisibility; integer division; integer greatest common
divisors.
10. Procedures: Local variables; the return statement; recursive functions; tracing and
debugging procedures; computing permutations recursively.
11. Complex numbers: Defining and manipulating complex numbers; complex vari-
ables and expressions; De Moivre’s theorem; the Argand diagram plotting complex
numbers.
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